Кислородсодержащие соединения хлора. Хлор и его соединения

Пособие-репетитор по химии

Продолжение. Cм. в № 22/2005; 1, 2, 3, 5, 6, 8, 9, 11, 13, 15, 16, 18, 22/2006;
3, 4, 7, 10, 11, 21/2007;
2, 7, 11, 18, 19, 21/2008;
1, 3/2009

ЗАНЯТИЕ 29

10-й класс (первый год обучения)

Галогены и их важнейшие соединения

1. Положение в таблице Д.И.Менделеева, строение атома.

2. Происхождение названий.

3. Физические свойства.

4. Химические свойства (на примере хлора).

5. Нахождение в природе.

6. Основные методы получения (на примере хлора).

7. Хлороводород и хлориды.

8. Kислородсодержащие кислоты хлора и их соли.

Галогены («солероды») расположены в VIIа подгруппе периодической системы. K ним относятся фтор, хлор, бром, йод и астат. Все галогены относятся к р -элементам, имеют конфигурацию внешнего энергетического уровня ns 2 p 5 . Поскольку на внешнем уровне атомов галогенов находится 1 неспаренный р -электрон, характерная валентность равна I. Kроме фтора, у атомов всех галогенов в возбужденном состоянии может увеличиваться число неспаренных электронов, поэтому возможны валентности III, V и VII.

Cl: 1s 2 2s 2 2p 6 3s 2 3p 5 3d 0 (валентность I),

Cl*: 1s 2 2s 2 2p 6 3s 2 3p 4 3d 1 (валентность III),

Cl**: 1s 2 2s 2 2p 6 3s 2 3p 3 3d 2 (валентность V),

Cl***: 1s 2 2s 2 2p 6 3s 1 3p 3 3d 3 (валентность VII).

Галогены являются типичными неметаллами, проявляют окислительные свойства. Степень окисления галогенов в соединениях с металлами и водородом –1; во всех кислородсодержащих соединениях галогены (кроме фтора) проявляют степени окисления +1, +3, +5, +7, например:

Вниз по подгруппе изменяется агрегатное состояние галогенов, уменьшается растворимость в воде, увеличивается радиус атома, уменьшаются электроотрицательность, неметаллические свойства и окислительная способность (фтор – самый сильный окислитель). Для соединений галогенов: от Cl – к I – увеличивается восстановительная способность галогенид-ионов. В ряду бескислородных и кислородсодержащих кислот происходит усиление кислотных свойств:

Название фтора произошло от греческого слова – разрушающий, поскольку плавиковая кислота, из которой пытались получить фтор, разъедает стекло. Хлор получил свое название благодаря окраске от греческого слова – желто-зеленый – цвет увядающей листвы. Бром назван по запаху жидкого брома от греческого слова – зловонный. Название йода произошло от греческого слова – фиолетовый – по цвету парообразного йода. Радиоактивный астат назван от греческого слова – неустойчивый.

По ф и з и ч е с к и м с в о й с т в а м фтор – трудносжижаемый газ светло-зеленого цвета, хлор – легко сжижающийся газ желто-зеленого цвета, бром – тяжелая жидкость красно-бурого цвета, йод – твердое кристаллическое вещество темно-фиолетового цвета с металлическим блеском, легко подвергается возгонке (сублимации). Все галогены, кроме йода, обладают резким удушливым запахом, токсичны.

Х и м и ч е с к и е с в о й с т в а

Все галогены проявляют высокую химическую активность, которая уменьшается при переходе от фтора к йоду. Химические свойства галогенов рассмотрим на примере хлора:

(F 2 – со взрывом; Br 2 , I 2 – на свету и при повышенной температуре.)

Металлы (+):

2Na + Cl 2 = 2NaCl;

2Fe + 3Cl 2 2FeCl 3 .

Неметаллы (+/–):*

N 2 + Cl 2 реакция не идет.

Основные оксиды (–).

Kислотные оксиды (–).

Основания (+/–):

Kислоты (+/–):

2HBr + Cl 2 = 2HCl + Br 2 ,

HCl + Br 2 реакция не идет.

Соли (+/–):

2KBr + Cl 2 = 2KCl + Br 2 ,

KCl + Br 2 реакция не идет.

В п р и р о д е в свободном виде галогены не встречаются из-за высокой химической активности. Среди наиболее распространенных соединений хлора можно выделить каменную или поваренную соль (NaCl), сильвинит (KCl NaCl), карналлит (KCl MgCl 2). Большое количество хлоридов содержится в морской воде. Хлор входит в состав хлорофилла. Природный хлор состоит из двух изотопов 35 Cl и 37 Cl. Подчеркнем, что в случае хлора число нейтронов в атоме возможно рассчитать только для каждого изотопа в отдельности:

35 Cl, p = 17, e = 17, n = 35 – 17 = 18;

37 Cl, p = 17, e = 17, n = 37 – 17 = 20.

В п р о м ы ш л е н н о с т и хлор получают электролизом водного раствора или расплава хлорида:

Л а б о р а т о р н ы е м е т о д ы получения (действие концентрированной соляной кислоты на различные окислители):

MnO 2 + 4HCl (конц.) = MnCl 2 + Cl 2 + 2H 2 O,

2KMnO 4 + 16HCl (конц.) = 2MnCl 2 + 5Cl 2 + 2KCl + 8H 2 O,

KClO 3 + 6HCl (конц.) = KCl + 3Cl 2 + 3H 2 O,

K 2 Cr 2 O 7 + 14HCl (конц.) = 2CrCl 3 + 3Cl 2 + 2KCl + 7H 2 O,

Ca(ClO) 2 + 4HCl (конц.) = CaCl 2 + 2Cl 2 + 2H 2 O.

Х л о р о в о д о р о д и х л о р и д ы

Хлороводород (HCl) – бесцветный газ с резким запахом, тяжелее воздуха, хорошо растворим в воде (в 1 объеме воды растворяется 450 объемов хлороводорода). Молекула образована по типу ковалентной полярной связи. Водный раствор хлороводорода называется соляной кислотой. Kонцентрированная соляная кислота «дымит» на воздухе, максимальная концентрация хлороводорода в растворе составляет 35–36 %. Это сильная кислота, проявляющая все характерные свойства кислот:

HCl H + + Cl – ,

2HCl + Zn = ZnCl 2 + H 2 ,

HCl + Cu реакция не идет,

2HCl + CaO = CaCl 2 + H 2 O,

HCl + NaOH = NaCl + H 2 O,

2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2 .

Kачественной реакцией на соляную кислоту и ее соли (хлориды) является реакция с раствором нитрата серебра:

Ag + + Cl – -> AgCl,

AgNO 3 + NaCl -> AgCl + NaNO 3 .

Хлороводород можно получить:

Прямым синтезом из водорода и хлора (синтетический способ):

Действием концентрированной серной кислоты на твердые хлориды – сульфатный способ (аналогично можно получить HF, но нельзя получить HBr и HI):

NaCl (тв.) + H 2 SO 4 (конц.) = HCl + NaHSO 4 .

С ростом степени окисления хлора сила кислот резко возрастает. Так, хлорноватистая кислота очень слабая (слабее угольной), а хлорная кислота – самая сильная из всех известных кислот.

K и с л о р о д с о д е р ж а щ и е к и с л о т ы х л о р а и и х с о л и

Kислотные оксиды Cl 2 O Cl 2 O 3 Cl 2 O 5 Cl 2 O 7
Kислоты HClO Хлорноватистая HClO 2
Хлористая
HClO 3 Хлорноватая HClO 4 Хлорная
Графические формулы
кислот
H–O–Cl H–O–Cl=O
Названия и примеры солей Гипохлорит натрия
NaClO
Хлорит натрия
NaClO 2
Хлорат натрия
NaClO 3
Перхлорат натрия
NaClO 4

Хлорноватистая кислота (HClO) – слабая, очень неустойчивая.

Соли этой кислоты (гипохлориты) являются очень сильными окислителями. Наибольшее применение находит смешанная соль соляной и хлорноватистой кислот – хлорид-гипохлорит кальция (хлорная известь):

Хлорноватая кислота (HClO 3) – существует только в разбавленных растворах. Сама кислота и ее соли (хлораты) являются сильными окислителями. Наиболее известной солью этой кислоты является хлорат калия (бертолетова соль).

5KClO 3 + 6P = 3P 2 O 5 + 5KCl,

KClO 3 + 3MnO 2 + 6KOH = KCl + 3K 2 MnO 4 + 3H 2 O,

4KClO 3 + 3K 2 S = 4KCl + 3K 2 SO 4 .

Многие соли кислородсодержащих кислот хлора термически неустойчивы, например:

2KClO 3 2KCl + 3O 2 ,

4KClO 3 3KClO 4 + KCl (без катализатора),

3KClO KClO 3 + 2KCl,

KClO 4 KCl + 2O 2 .

Тест по теме «Галогены и их важнейшие соединения»

1. Газ имеет плотность 3,485 г/л при давлении 1,2 атм и температуре 25 °С. Установите формулу газа.

а) Фтор; б) хлор;

в) бромоводород;

г) хлороводород.

2. Явление перехода вещества из твердого состояния в газообразное, минуя жидкое, называется:

а) конденсация; б) сублимация;

в) возгонка; г) перегонка.

3. Природный хлор представляет собой смесь изотопов с массовыми числами 35 и 37. Рассчитайте изотопный состав хлора, приняв его относительную атомную массу за 35,5.

а) 75 % и 25 %;

б) 24,4 % и 75,8 %;

в) 50 % и 50 %;

г) недостаточно данных для решения задачи.

4. Хлор можно получить, проводя электролиз:

а) расплава хлорида калия;

б) раствора хлорида калия;

в) расплава хлорида меди;

г) раствора хлорида меди.

5. Раствор фтороводорода в воде называют:

а) жавелевой водой;

б) плавиковой кислотой;

в) белильной известью;

г) фтороводородной кислотой.

6. Оксид хлора(V) является ангидридом следующей кислоты:

а) хлорноватистой; б) хлорноватой;

в) хлористой; г) хлорной.

7. При прокаливании бертолетовой соли в присутствии диоксида марганца в качестве катализатора образуются:

а) хлорид калия и кислород;

б) перхлорат калия и хлорид калия;

в) перхлорат калия и озон;

г) гипохлорит калия и хлор.

8. K подкисленному раствору, содержащему 0,543 г некоторой соли, в состав которой входят литий, хлор и кислород, добавили раствор йодида натрия до прекращения выделения йода. Масса выделившегося йода составила 4,57 г. Название исходной соли:

а) гипохлорит лития; б) хлорит лития;

в) хлорат лития; г) перхлорат лития.

9. В молекулах галогенов химическая связь:

а) ковалентная полярная;

б) ковалентная неполярная;

в) ионная;

г) донорно-акцепторная.

10. Хлор, в отличие от фтора , при определенных условиях может реагировать с:

а) водой; б) водородом;

в) медью; г) гидроксидом натрия.

Kлюч к тесту

1 2 3 4 5 6 7 8 9 10
б б, в а а, б, в, г б, г б а в б г

Задачи и упражнения на галогены и их соединения

Ц е п о ч к и п р е в р а щ е н и й

1. Хлорид калия -> хлор -> хлороводород -> хлорид кальция -> хлороводород -> хлор -> хлорат калия.

2. Хлор -> бертолетова соль -> хлорид калия -> соляная кислота + диоксид марганца + вода -> хлор -> хлорид меди(II) -> хлор.

3. Хлорид калия -> хлор -> хлорат калия -> хлорид калия -> калий.

4. Хлорид калия -> хлор -> хлороводород -> хлор -> гипохлорит калия.

5. Хлорид натрия -> хлороводород -> хлор -> бертолетова соль -> хлорид калия -> гидроксид калия -> гипохлорит калия.

6. Хлорат калия -> А -> В-> С -> А -> нитрат калия (вещества А, В, С содержат хлор, первые три превращения – окислительно-восстановительные реакции).

7. Оксид кальция -> гидроксид кальция -> белильная известь -> хлорид кальция -> кальций.

8. Бромид натрия -> хлорид натрия -> хлор -> хлорная известь -> карбонат кальция -> гидрокарбонат кальция -> углекислый газ.

9. Йодид натрия -> йод -> йодид калия -> йодид серебра.

10. Гипохлорит калия -> хлорат калия -> перхлорат калия -> хлорид калия.

У р о в е н ь А

1. Сосуд с 200 г хлорной воды выдержали на прямом солнечном свету и собрали выделившийся газ, объем которого при н.у. составил 0,18 л. Определите состав хлорной воды (массовую долю хлора).

Ответ. 0,57 %.

2. Газ, полученный прокаливанием 9,8 г бертолетовой соли, смешан с газом, полученным на аноде в результате полного электролиза расплава 22,2 г хлорида кальция. Полученную смесь газов пропустили через 400 г 2%-го горячего раствора гидроксида натрия. Определите состав полученного раствора.

Ответ . 2,38 % NaCl; 0,84 % NaClO 3 .

3. Рассчитать массу соли и объем газа (н.у.), образовавшихся при разложении 17 г соли, окрашивающей пламя горелки в желтый цвет и содержащей 27,06 % металла, 16,47 % азота и 56,47 % кислорода. Kакая масса бертолетовой соли потребуется для получения такого же количества газа?

Ответ . 13,8 г NaNO 2 ; 2,24 л O 2 ; 8,13 г KClO 3 .

4. Kакой объем хлора (н.у.) можно получить из 1 м 3 раствора (плотность 1,23 г/см 3), содержащего 20,7 % хлорида натрия и 4,3 % хлорида магния?

Ответ . 61,2 м 3 .

5. Газ, выделившийся на аноде при электролизе 200 г 20%-го раствора хлорида натрия, пропустили через 400 г 30%-го раствора бромида калия. K полученному раствору добавили избыток раствора нитрата серебра. Определите количественный состав выпавшего осадка.

Ответ . 59,4 г AgBr; 98,154 г AgCl.

У р о в е н ь Б

1. Через трубку с порошкообразной смесью хлорида и йодида натрия массой 3 г пропустили 1,3 л хлора при температуре 42 °С и давлении 101,3 кПа. Полученное в трубке вещество прокалили при 300 °С, при этом осталось 2 г вещества. Определите массовые доли солей в исходной смеси.

Ответ . 45,3 % NaCl; 54,6 % NaI.

2. Смесь йодида магния и йодида цинка обработали избытком бромной воды, полученный раствор выпарили. Масса сухого остатка оказалась в 1,445 раза меньше массы исходной смеси. Во сколько раз масса осадка, полученного после обработки такой же смеси избытком карбоната натрия, будет меньше массы исходной смеси?

Ответ. В 2,74 раза.

3. Для окисления 2,17 г сульфита щелочно-земельного металла добавили хлорную воду, содержащую 1,42 г хлора. K полученной смеси добавили избыток бромида калия, при этом выделилось 1,6 г брома. Определите состав осадка, содержащегося в смеси, и рассчитайте его массу..

(BaSO 4) = (BaSO 3) = 0,01 моль,

m(BaSO 4) = (BaSO 4) M (BaSO 4) = 0,01 233 = 2,33 г.

Ответ . 2,33 г BaSO 4 .

4. Через 800 г 10%-го водного раствора хлорида натрия пропустили ток. После окончания процесса электролиза соли весь выделившийся на аноде газ поглотили горячим раствором, получившимся в результате электролиза. Определите состав раствора, полученного после поглощения газа.

Ответ . В растворе 8,35 % NaCl и
3,03 % NaClO 3 .

5. Плотность смеси хлора с водородом при давлении 0,2 атм и температуре 27 °С равна 0,0894 г/л. Хлороводород, полученный при взрыве 100 л (н.у.) такой смеси, растворили в 500 г 10%-й соляной кислоты. Найдите массовую долю хлороводорода в полученном растворе.

Ответ . 17 %.

K а ч е с т в е н н ы е з а д а ч и

1. Назовите вещества А, В и С, если известно, что они вступают в реакции, описываемые приведенными ниже схемами; напишите полные уравнения реакций этих схем:

А + Н 2 -> В,

А + Н 2 О В + С,

А + Н 2 О + SО 2 -> В + … ,

С -> В + … .

Ответ . Вещества: А – Сl 2 ,
B – HCl; С – HClO.

2. Газ А под действием концентрированной серной кислоты превращается в простое вещество В, которое реагирует с сероводородной кислотой с образованием простого вещества С и раствора исходного вещества А. Идентифицируйте вещества, напишите уравнения реакций.

Ответ. Вещества: А – HBr; B – Br 2 ; С – S.

3. При пропускании хлора через раствор сильной кислоты А выделяется простое вещество В и раствор приобретает темную окраску. При дальнейшем пропускании хлора вещество В превращается в кислоту С и раствор обесцвечивается. Назовите вещества А, В и С, напишите уравнения реакций.

Ответ. Вещества: А – HI; B – I 2 , C – HIO 3 .

4. Приведите примеры реакций, в ходе которых происходит полное восстановление свободного брома: а) в кислом водном растворе; б) в щелочном водном растворе; в) в газовой фазе.

Ответ. Уравнения реакций:

5. Kакие вещества вступили в реакцию и при каких условиях, если в результате образовались следующие вещества (указаны все продукты без коэффициентов): а) хлорид бария и гидроксид калия; б) бромид кальция и бромоводород; в) хлорид калия и пентаоксид фосфора. Напишите полные уравнения реакций.

Ответ. Уравнения реакций:

а) Ba(ClO) 2 + 2KH = BaCl 2 + 2KOH;

б) CaH 2 + 2Br 2 = CaBr 2 + 2HBr;

в) 5KClO 3 + 6P 5KCl + 3P 2 O 5 .

6. Для дегазации необходимо 254 г хлорной извести. В лаборатории имеются: кальций, диоксид марганца, натрий, цинк, хлорид натрия, серная кислота, вода, фосфор, сера, сульфат бария. Kакие реагенты и в каком количестве потребуются? Напишите полные уравнения реакций.

Ответ. 142 г Ca; 830,7 г NaCl; 308,85 г MnO 2 ;
1391,6 г H 2 SO 4 .

Уравнения реакций:

Ca + 2H 2 O = Ca(OH) 2 + H 2 ,

NaCl (тв.) + H 2 SO 4 (конц.) = HCl + NaHSO 4 ,

MnO 2 + 4HCl = Cl 2 + MnCl 2 + 2H 2 O,

2Cl 2 + 2Ca(OH) 2 Ca(ClO) 2 + CaCl 2 + 2H 2 O.

7. K водному раствору йодида калия по каплям приливают свежеприготовленную хлорную воду. Объясните, почему вначале появляющаяся окраска раствора затем исчезает. Подтвердите свой ответ уравнениями реакций.

Ответ. Уравнения реакций:

2KI + Cl 2 = 2KCl + I 2 ,

I 2 + 5Cl 2 + 6H 2 O = 2HIO 3 + 10HCl.

* Знак +/– означает, что данная реакция протекает не со всеми реагентами или в специфических условиях.

Продолжение следует

Хлор

Фтор

Главная подгруппа VII группы

У элементов главной подгруппы, которые называются "галогены", на внешнем электронном уровне, имеющем общее строение...ns 2 p 5 , не достает одного электрона до устойчивого восьмиэлектронного уровня. Энергия сродства к электрону достаточно велика и галогены очень активны по отношению к металлам и неметаллам. Бурно идут реакции с водородом, образующиеся галогеноводороды растворяясь в воде дают кислоты сила которых растет сверху вниз по группе. Фтор, не имеющий d-подуровня, проявляет в своих соединениях только степень окисления -1, остальные галогены могут проявлять степени окисления -1, +1, +3, +5, +7.

В природе встречается в виде CaF 2 – флюорит, KHF 2 – бифторид. Простое вещество F 2 в промышленности получают электролизом расплава бифторида. F 2 - газ желтоватого цвета с удушающим запахом, крайне ядовит, химически чрезвычайно активен.

Химические свойства

1. Фтор взаимодействует со всеми простыми веществами, кроме гелия, неона и аргона:

3F 2 + Cl 2 = 2ClF 3 ;

3F 2 + S = SF 6 ;

5F 2 + 2P = 2PF 5 ;

2. При взаимодействии F 2 со щелочами образуется фторид кислорода (OF 2):

2F 2 + 2NaOH = 2NaF + OF 2 + H 2 O

OF 2 - бесцветный газ, по запаху напоминает озон, сильно ядовит. Это единственное соединение, где кислород имеет степень окисления +2.

3. Так как взаимодействие F 2 + H 2 = 2HF происходит со взрывом, фтористый водород получают не прямым синтезом, а по реакции:

CaF 2 + H 2 SO 4(конц) = CaSO 4 + 2HF

HF - легко кипящая жидкость (Т кип. = +20 о С), с водой смешивается в любых соотношениях. 40%-ный раствор HF в воде называется плавиковой кислотой. Плавиковая кислота – кислота средней силы. Это вещество одно из самых опасных по физиологическому воздействию: ядовита, при попадании на кожу вызывает долго не заживающие язвы, разрушает зубы. Органику обугливает эффективней серной кислоты.

В растворе молекулы плавиковой кислоты сильно ассоциированы за счет водородных связей. Наиболее прочны димеры, поэтому правильнее записывать формулу плавиковой кислоты следует в виде H 2 F 2 . Известны многочисленные соли этого димера (KHF 2 и др).

4. Практическое значение имеет реакция взаимодействия плавиковой кислоты с оксидом кремния (он входит в состав стекла):

SiO 2 + 4HF = SiF 4 + 2H 2 O

Эта реакция лежит в основе нанесения узоров и рисунков на стекло.

Применение . F 2 используется при производстве фторорганических соединений, например фторопласта (тефлона). Тефлон - белый плотный полимер, устойчивый во всех агрессивных средах вплоть до +350 o С. Фтор придает высокую эластичность резине в интервале температур от -80 о С до +200 о С.



В природе встречается в виде различных соединений, основным из которых является NaCl – поваренная соль, электролизом водного раствора которой на аноде получают хлор. Простое вещество Cl 2 - газ желто-зеленого цвета. При -34 о С легко сжижается. Ядовит. Плохо растворим в воде.

Химические свойства

1. Хлор обладает несколько меньшим сродством к электрону, чем фтор, однако остается очень активным неметаллом. Многие реакции с участием Cl 2 идут со взрывом. Cl 2 является сильным окислителем. Не реагирует с кислородом, углеродом, азотом. Вступает в реакции со сложными молекулами:

2NO + Cl 2 = 2NOCl – хлористый нитрозил;

CO + Cl 2 = COCl 2 – фосген;

Хлорированием метана в промышленности получают следующие соединения:

CH 4 + Cl 2 = CH 3 Cl – хлористый метил

CH 3 Cl + Cl 2 = CH 2 Cl 2 – хлористый метилен

СH 2 Cl 2 + Cl 2 = CHCl 3 – хлороформ

CHCl 3 + Cl 2 = CCl 4 – четыреххлористый углерод

2. Хлористый водород можно получить прямым синтезом из простых веществ:

Cl 2 + H 2 = 2HCl

эта реакция относится к фотохимическим, т. е. идущая под действием света.

В лабораторных условиях хлористый водород обычно получают из NaCl при нагревании с концентрированной серной кислотой:

NaCl + H 2 SO 4(конц) = NaHSO 4 + HCl

Хлористый водород – газ с резким запахом, хорошо растворимый в воде с образованием соляной кислоты (предел растворимости 38%). Соляная кислота сильнее, чем плавиковая, не ядовита. В концентрированном состоянии является восстановителем:

K 2 Cr 2 O 7 + 14HCl (конц) = 2KCl + 2CrCl 3 + 3Cl 2 + 7H 2 O

HClO – хлорноватистая кислота. Ей соответствует кислотный оксид Cl 2 O. Соли называются гипохлоритами.

HClO 2 – хлористая кислота. Кислотный оксид Cl 2 O 3 не получен. Соли – хлориты.

HClO 3 – хлорноватая кислота. Кислотный оксид Cl 2 O 5 не получен. Соли – хлораты.

HClO 4 – хлорная кислота. Кислотный оксид - Cl 2 O 7 . Соли – перхлораты.

1) HClO – желтоватая жидкость. Существует только в растворах. Получается при взаимодействии хлора с водой (без нагревания):

Cl 2 + H 2 O = HCl + HClO

Соли этой кислоты получаются при действии на щелочь хлора:

2KOH + Cl 2 = KClO + KCl + H 2 O

используется как отбеливатель в текстильной промышленности.

2) HClO 2 , HClO 3 – не имеют ангидридов (кислотных оксидов). Соли этих кислот применяют в пиротехнике и взрывных работах. Наибольшее значение имеет KClO 3 хлорат калия (бертолетовая соль), получаемая насыщением горячей щелочи хлором:

3Cl 2 + 6KOH = KClO 3 + 5KCl + 3H 2 O

Хлораты - сильнейшие окислители. При ударе или нагревании взрываются.

3) Известен оксид ClO 2 , который можно получить по реакции:

2KClO 3 + H 2 C 2 O 4 = K 2 CO 3 + CO 2 ­ + H 2 O + 2ClO 2 ­

ClO 2 – зелено-желтый газ, при растворении в воде дает смесь кислот:

2ClO 2 + H 2 O = HClO 2 + HClO 3

4) Осторожным нагреванием хлораты можно перевести в перхлораты, из которых можно получить хлорную кислоту:

KClO 4 + H 2 SO 4 = HClO 4 + KHSO 4

Хлорная кислота HClO 4 подвижная жидкость, очень взрывоопасная, самая сильная из всех известных кислот. Почти все ее соли хорошо растворимы в воде.

5) В ряду HClO - HClO 2 - HClO 3 - HClO 4 сила кислот растет, а окислительная способность падает.

Хлор находит широкое применение в химической промышленности для получения хлористого водорода и соляной кислоты, синтеза хлорорганических веществ, обеззараживания питьевой воды, в текстильной промышленности для отбеливания тканей, в производстве ядохимикатов.

В табл. 16.12 приведены систематические и традиционные названия кислородсодержащих кислот хлора и их солей. Чем выше степень окисления хлора в этих кислотах, тем выше их термическая устойчивость и силакислоты:

5 - сильные кислоты, причем 6 одна из самых сильных среди всех известных кислот. Остальные две кислоты лишь частично диссоциируют в воде и

Таблица 16.12. Кислородсодержащие кислоты хлора и их анионы

существуют в водном растворе преимущественно в молекулярной форме. Среди кислородсодержащих кислот хлора только 7 удается выделить в свободном виде. Остальные кислоты существуют только в растворе.

Окислительная способность кислородсодержащих кислот хлора уменьшается с возрастанием егостепени окисления:

8 - особенно хорошие окислители. Например, кислый раствор 9:

1) окисляет ионы железа (II) до ионов железа (III):

2) на солнечном свету разлагается с образованием кислорода:

3) при нагревании приблизительно до 75 °С он диспропорционирует на хлорид-ионы и хлорат 10-ионы:

Соли кислородсодержащих кислот хлора

Эти соли обычно более устойчивы, чем сами кислоты. Исключением являются твердые соли хлораты (III), которые детонируют при нагревании и при соприкосновении с горючими материалами. В растворах окислительная способность кислородсодержащих солей хлора тем больше, чем больше в этих соляхстепень окисления хлора. Однако они не являются столь хорошими окислителями, как соответствующие кислоты. Натриевые и калиевые соли 11 имеют важное промышленное значение. Их производство и применения описаны в следующем разделе. Хлорат (V) калия обычно используют для лабораторного получения кислорода, в присутствии оксида 12 в качестве катализатора:

При нагревании этой соли до более низкой температуры в отсутствие катализатора происходит образование 13калия:

Иодат (V) калия 14 калия 15 сильные окислители, и в качестве окислителей они используются в количественном анализе.

Итак, повторим еще раз 1. Свойства галогенидов различных элементов при перемещении слева направо в пределах одного периода изменяются следующим образом: а) характер химической связи становится все более ковалентным и все менее ионным; б) водные растворы галогенидов становятся все более кислыми из-за гидролиза. 2. Свойства различных галогенидов одного и того же элемента при перемещении к нижней части VII группы изменяются следующим образом: а) характер химической связи галогенидов становится все более ковалентным: б) прочность связи в молекулах галогеноводородов уменьшается; в) кислотность галогеноводородных кислот уменьшается; г) легкость окисления галогеноводородов возрастает. 3. По мере возрастания степени окисления галогена происходят следующие изменения: а) термическая устойчивость его кислородсодержащих кислот возрастает; б) кислотность его кислородсодержащих кислот возрастает; в) окислительная способность его кислородсодержащих кислот уменьшается; г) окислительная способность солей его кислородсодержащих кислот возрастает. 4. Галогениды можно получать прямым синтезом из образующих их элементов. 5. Для получениигалогеноводородов может использоваться реакция вытеснения из галогенидной соли менее летучей кислотой. 6. Аномальные свойства соединений фтора: а) фторид серебра растворим в воде, а фторид кальция нерастворим; б) фтороводород имеет аномально высокие температуры плавления и кипения; в) водный раствор фтороводорода имеет низкую кислотность; г) фтор обнаруживает только одно устойчивое состояние окисления. Другие галогены обнаруживают множество состояний окисления, что объясняется промотированием их16 -электронов на легко доступные 17-орбитали, обладающие низков энергией.


===============================================================================

31. Кислород. Получение и свойства кислорода. Аллотропия кислорода. Озон, его свойства. Озон в природе. Кислород-элемент с порядковым номером 8, его относительная атомная масса=15,999.Находится во втором периоде, в главной подгруппе 6 группы.
В большинстве своих соединений кислород имеет степень окисление -2.В пероксидах водорода и металлов(Н2О2, Na2O, CaO2 и др.)степень окисления кислорода -1.Существует единственное соединение, в котором кислород имеет положительную степень окисления +2-это фтроид кислорода OF2 (фтор-единственный элемент, ЭО которого больше ЭО кислорода, равной 3,5). Обычный кислород О2-газ без цвета и запаха, тяжелее воздуха. В воде малорастворим. Получение. Лабораторные методы получения О2 достаточно многочисленны. 1.Раздожение бертолетовой соли(хлората калия) при нагревании в присутствии оксида марганца(IV) в качестве катализатора: 2KClO3(t)(MnO2)=2KCl + 3O2
2.Термическое разложение перманганата калия: 2KMnO4(t)=K2MnO4 + MnO2 + O2
3.Термическое разложение нитратов щелочных металлов, например: 2NaNo3(t)=2NaNO2 + O2 4.Каталитическое разложение пероксида водорода: 2H2O2(MnO2)=2H2O + O2
5.Взаимодействие пероксидов щелочных металлов с углекислым газом: 2Na2O2 + 2CO2=2NaCO3 + O2 6.Электролиз водных растворов щелочей или солей кислородосодержащих кислот. Сущность происходящих при этом процессов сводится к разложению воды под действием электрического тока: 2H2O(электролиз)=2H2 + O2

В промышленности кислород получают из воздуха. Химические свойства.
Кислород образует соединения со всеми химическими элементами, кроме легких инертных газов(He, ne, Ar),причем со всеми простыми веществами, кроме фтора, хлора, золота и платиновых металлов, он взаимодействует непосредственно. Во всех реакциях O2играет роль окислителя. При взаимодействии кислорода с простыми веществами -металлами и неметаллами- обычно образуются оксиды; например: 4Li+O2=2LiO2 4P+5O2(60 градусов)=2P2O5 Почти все реакции с участием O2 экзотермичны, за редким исключением; например: N2+O2=2NO-Q Кислород может существовать в виде двух аллотропных видоизменений: кислород О2 и озон О3. Аллотропия (от греч. allos - другой и tropos - образ, способ) связана либо с разным числом атомов в молекуле, либо со строением. При сравнении физических свойств кислорода и озона целесообразно вспомнить, что это газообразные вещества, различающиеся по плотности (озон в 1,5 раза тяжелее кислорода), температурам плавления и кипения. Озон лучше растворяется в воде. Кислород в нормальных условиях - газ, без цвета и запаха, озон - газ голубого цвета с характерным резким, но приятным запахом. Есть отличия и в химических свойствах.
Озон химически активнее кислорода. Активность озона объясняется тем, что при его разложении образуется молекула кислорода и атомарный кислород, который активно реагирует с другими веществами. Например, озон легко реагирует с серебром, тогда как кислород не соединяется с ним даже при нагревании: Но в то же время и озон и кислород реагируют с активными металлами, например с калием К. Получение озона происходит по следующему уравнению: Реакция идет с поглощением энергии при прохождении электрического разряда через кислород, например во время грозы, при сверкании молнии. Обратная реакция происходит при обычных условиях, так как озон - неустойчивое вещество. В природе озон разрушается под действием газов, выбрасываемых в атмосферу, например фреонов, в процессе техногенной деятельности человека. Результатом является образование так называемых озоновых дыр, т. е. разрывов в тончайшем слое, состоящем из молекул озона.
Химические свойства : озон – сильный окислитель, он окисляет все металлы, в том числе золото – Au и платину – Pt (и металлы платиновой группы). Озон воздействует на блестящую серебряную пластинку, которая мгновенно покрывается черным пероксидом серебра – Аg2О2; бумага, смоченная скипидаром, воспламеняется, сернистые соединения металлов окисляются до солей серной кислоты; многие красящие вещества обесцвечиваются; разрушает органические вещества – при этом молекула озона отщепляет один атом кислорода, и озон превращается в обыкновенный кислород. Атакже большинство неметаллов, переводит низшие оксиды в высшие, а сульфиды их металлов – в их сульфаты: Йодид калия озон окисляет до молекулярного йода: Но с пероксидом водорода Н2О2 озон выступает в качестве восстановителя: В химическом отношении молекулы озона неустойчивы – озон способен самопроизвольно распадаться на молекулярный кислород:

Нахождение в природе : в атмосфере озон образуется во время электрических разрядов. Применение: будучи сильным окислителем озон уничтожает различного рода бактерии, поэтому широко применяется в целях очищения воды и дезинфекции воздуха, используется как белящее средство.

================================================================================

32) . Пероксид водорода, его строение и свойства.

Галогены образуют ряд соединений с кислородом. Однако все эти соединения неустойчивы, не получаются при непосредственном взаимодействии галогенов с кислородом и могут быть получены только косвенным путем. Такие особенности кислородных соединений галогенов согласуются с тем, что почти все они характеризуются положительными значениями стандартной энергии Гиббса образования (см., например, в табл. 7 на стр. 194 значения для ).

Из кислородсодержащих соединений галогенов наиболее устойчивы соли кислородных кислот, наименее- оксиды и кислоты. Во всех кислородсодержащих соединениях галогены, кроме фтора, проявляют положительную степень окисленности, достигающую семи.

Фторид кислорода можно получить пропусканием фтора в охлажденный раствор . Реакция идет согласно уравнению:

Помимо при этом всегда образуются кислород, озон и пероксид водорода. При обычных условиях - бесцветный газ с резким запахом озона. Фторид кислорода очень ядовит, проявляет сильные окислительные свойства и может служить одним из эффективных окислителей ракетных топлив.

Наиболее многочисленны и важны в практическом отношении кислородные соединения хлора, которые мы и рассмотрим несколько подробнее.

Как уже указывалось, кислородные соединения хлора могут быть получены только косвенными методами. Рассмотрение путей их образования начнем с процесса гидролиза хлора, т. е. с обратимой реакции между хлором и водой

в результате которой образуются соляная кислота и хлорноватстая кислота .

Гидролиз хлора является реакцией самоокисления-самовосстановления, при которой один из атомов хлора, присоединяя к себе электрон от другого атома, восстанавливается, а другой атом хлора окисляется.

Получающиеся при гидролизе хлора и могут взаимодействовать друг с другом, снова образуя хлор и воду, поэтому реакция не идет до конца; равновесие устанавливается, когда прореагирует приблизительно растворенного хлора. Таким образом, хлорная вода всегда содержит наряду с молекулами значительное количество соляной и хлорноватистой кислот.

Хлорноватистая кислота - очень слабая кислота (), более слабая, чем угольная; соли ее называются гипохлоритами. Будучи весьма нестойким соединением, хлорноватистая кислота даже в разбавленном растворе постепенно распадается (см. ниже).

Хлорноватистая кислота - очень сильный окислитель; ее образованием при взаимодействии хлора с водой объясняются белящие свойства хлора. Совершенно сухой хлор не белит, но в присутствии влаги происходит быстрое разрушение красящих веществ образующейся при гидролизе хлора хлорноватистой кислотой.

Если к хлорной воде прибавлять щелочь, то вследствие нейтрализации хлорноватистой и соляной кислот равновесие в системе

сдвигается вправо; реакция практически доходит до конца и получается раствор, содержащий соли хлорноватистой и соляной кислот:

Тот же результат получится, если непосредственно пропускать хлор в холодный раствор щелочи

или в ионно-молекулярной форме:

Полученный таким путем раствор солей хлорноватистой и соляной кислот применяется для беления; его белящие свойства обусловливаются тем, что гипохлорит калия легко разлагается уже при действии диоксида углерода, находящегося в воздухе, причем образуется хлорноватистая кислота:

Последняя и обесцвечивает красящие вещества, окисляя их.

Аналогичный раствор, содержащий гипохлорит натрия, получается при пропускании хлора в раствор гидроксида натрия. Оба раствора можно получить электролизом растворов хлоридов калия или натрия, если дать возможность выделяющемуся хлору реагировать с образующимися при электролизе щелочами (см, стр. 549).

При действии хлора на сухую гашеную известь получается так называемая белильная, или хлорная, известь. Главной ее составной частью является соль , образующаяся согласно уравнению:

Этой соли отвечает структурная формула , согласно которой следует рассматривать как смешанную соль соляной и хлорноватистой кислот.

Хлорная известь представляет собой белый порошок с резким запахом и обладает сильными окислительными свойствами. Во влажном воздухе под действием диоксида углерода она постепенно разлагается, выделяя хлорноватистую кислоту:

При действии на хлорную известь соляной кислоты выделяется хлор:

Хлорная известь применяется для отбелки растительного волокна (тканей, бумаги) и для дезинфекции.

В растворе хлорноватистая кислота испытывает три различных типа превращений, которые протекают независимо друг от друга:

Изменяя условия, можно добиться того, что реакция пройдет практически нацело по какому-нибудь одному направлению.

Под действием прямого солнечного света и в присутствии некоторых катализаторов или восстановителей разложение хлорноватистой кислоты протекает согласно уравнению (1).

Реакция (2) идет в присутствии водоотнимающнх средств, например . В результате реакции получается оксид (хлорноватистый ангидрид) , представляющий собой крайне неустойчивый желто-бурый газ с запахом, похожим на запах хлора.

Распад согласно реакции (3) особенно легко идет при нагревании. Поэтому, если пропускать хлор в горячий раствор гидроксида калия, то вместо сразу получается :

Продуктами реакции являются хлорид калия и хлорит калия - соль хлорноватой кислоты . Поскольку хлорат калия (или бертолетова соль) мало растворим в холодной воде, то при охлаждении раствора он выпадает в осадок.

Соответствующая хлоратам хлорноватая кислота известна только в виде водного раствора с концентрацией не выше . Она проявляет свойства сильной кислоты (приблизительно равной по силе и ) и сильного окислителя. Так, концентрированные ее растворы воспламеняют дерево.

В противоположность свободной , у хлоратов окислительные свойства в растворе выражены слабо. Большинство из них хорошо растворимы в воде; все они ядовиты. Наибольшее применение из хлоратов находит , который при нагревании легко разлагается. В присутствии (в качестве катализатора) разложение в основном протекает согласно уравнению:

С различными горючими веществами (серой, углем, фосфором) образует смеси, взрывающиеся при ударе. На этом основано его применение в артиллерийском деле для устройства запалов. Хлорат калия употребляется в пиротехнике для приготовления бенгальских огней и других легко воспламеняющихся смесей. Главный же потребитель хлората калия - спичечная промышленность. В головке обычной спички содержится около .

Ангидрид хлорноватой кислоты неизвестен. При действии концентрированной серной кислоты вместо него выделяется желто-бурый газ с характерным запахом - диоксид (или двуокись) хлора . Это очень неустойчивое соединение, которое при нагревании, ударе или соприкосновении с прочими веществами легко разлагается со взрывом на хлор и кислород.

Диоксид хлора применяют для отбелки или стерилизации различных материалов (бумажной массы, муки и ).

При взаимодействии с раствором щелочи медленно протекает реакция

с образованием солен двух кислот - хлорноватой и хлористой .

Хлористая кислота мало устойчива. По силе и окислительной активности она занимает промежуточное положение между и . Соли хлориты используются при отбелке тканей.

При осторожном нагревании хлората калия без катализатора его разложение протекает в основном согласно схеме:

Образующийся перхлорат калия очень мало растворим в воде и поэтому может быть легко выделен.

Действием концентрированной серной кислоты на может быть получена свободная хлорная кислота , представляющая собой бесцветную, дымящую на воздухе жидкость.

Безводная малоустойчива и иногда взрывается при хранении, но ее водные растворы вполне устойчивы. Окислительные свойства выражены слабее, чем у , а кислотные свойства- сильнее. Хлорная кислота - самая сильная из всех известных кислот.

Соли , за немногими исключениями, к которым относится и , хорошо растворимы и в растворе окислительных свойств не проявляют.

Если нагревать хлорную кислоту с , отнимающим от нее воду, то образуется оксид , или хлорный ангидрид,

Оксид - маслянистая жидкость, кипящая с разложением при . При ударе или при сильном нагревании взрывается.

Изменение свойств в ряду кислородных кислот хлора можно выразить следующей схемой:

С увеличением степени окисленности хлора устойчивость его кислородных кислот растет, а их окислительная способность уменьшается. Наиболее сильный окислитель - хлорноватистая кислота, наименее сильный - хлорная кислота.

Напротив, сила кислородных кислот хлора возрастает с увеличением его степени окисленности. Из всех гидроксидов хлора самая слабая кислота - хлорноватистая, самая сильная - хлорная. Такая закономерность - усиление кислотных свойств гидроксида , соответственно, ослабление его основных свойств) с ростом степени окисленности элемента характерна не только для хлора, но и для других элементов. В первом приближении эту закономерность можно объяснить, рассматривая все химические связи в молекулах гидроксидов как чисто ионные.

На рис. 108 схематически изображена часть молекулы гидроксида , составленная из -зарядного иона , иона кислорода и иона водорода (протона) . Диссоциация этой части молекулы на ионы может происходить либо с разрывом связи (в результате чего отщепляется ), либо с разрывом связи (что приводит к отщеплению иона ); в первом случае гидроксид будет проявлять свойства основания, во втором - свойства кислоты.

Каждый из возможных путей диссоциации гидроксида будет осуществляться тем легче, чем слабее связь между соответствующими ионами. При возрастании степени окисленности элемента увеличится заряд иона , что усилит его притяжение к иону и тем самым затруднит диссоциацию гидроксида по типу основания.

Рис. 108. Ионная схема фрагмента молекулы гидроксида

Вместе с тем усилится взаимное отталкивание одноименно заряженных ионов и , что облегчит диссоциацию по кислотному типу. Таким образом, с увеличением степени окисленности элемента усиливаются кислотные свойства и ослабевают основные свойства образуемого этим элементом гидроксида.

Увеличение радиуса иона при неизменном его заряде приведет к возрастанию расстояний между центром этого иона и центрами ионов и . В результате взаимное электростатическое притяжение ионов и станет более слабым, что облегчит диссоциацию по основному типу; одновременно уменьшится взаимное отталкивание ионов и , так что диссоциация по кислотному типу затруднится. Следовательно, с возрастанием радиуса иона элемента (при неизменном его заряде) усиливаются основные свойства и ослабляются кислотные свойства образуемого этим элементом гидроксида. Примером проявления этой закономерности может служить изменение констант кислотной диссоциации в ряду .

Хлор — элемент 3-го периода и VII А-группы Периодической системы, порядковый номер 17. Электронная формула атома [ 10 Ne ]3s 2 Зр 5 , характерные степени окисления 0, -1, + 1, +5 и +7. Наиболее устойчиво состояние Cl -1 . Шкала степеней окисления хлора:

7 – Cl 2 O 7 , ClO 4 — ,HClO 4 , KClO 4

5 — ClO 3 — , HClO 3 ,KClO 3

1 – Cl 2 O , ClO — , HClO , NaClO , Ca(ClO) 2

— 1 – Cl — , HCl, KCl , PCl 5

Хлор обладает высокой электроотрицательностью (2,83), проявляет неметаллические свойства. Входит в состав многих веществ — оксидов, кислот, солей, бинарных соединений.

В природе — двенадцатый по химической распространенности элемент (пятый среди неметаллов). Встречается только в химически связанном виде. Третий по содержанию элемент в природных водах (после О и Н), особенно много хлора в морской воде (до 2 % по массе). Жизненно важный элемент для всех организмов.

Хлор С1 2 . Простое вещество. Желто-зеленый газ с резким удушливым запахом. Молекула Сl 2 неполярна, содержит σ-связь С1-С1. Термически устойчив, негорюч на воздухе; смесь с водородом взрывается на свету (водород сгорает в хлоре):

Cl 2 +H 2 ⇌HCl

Хорошо растворим в воде, подвергается в ней дисмутации на 50 % и полностью — в щелочном растворе:

Cl 2 0 +H 2 O ⇌HCl I O+HCl -I

Cl 2 +2NaOH (хол) = NaClO+NaCl+H 2 O

3Cl 2 +6NaOH (гор) =NaClO 3 +5NaCl+H 2 O

Раствор хлора в воде называют хлорной водой , на свету кислота НСlO разлагается на НСl и атомарный кислород О 0 , поэтому «хлорную воду» надо хранить в темной склянке. Наличием в «хлорной воде» кислоты НСlO и образованием атомарного кислорода объясняются ее сильные окислительные свойства: например, во влажном хлоре обесцвечиваются многие красители.

Хлор очень сильный окислитель по отношению к металлам и неметаллам:

Сl 2 + 2Nа = 2NаСl 2

ЗСl 2 + 2Fе→2FеСl 3 (200 °С)

Сl 2 +Se=SeCl 4

Сl 2 + РЬ→PbCl 2 (300 ° С )

5Cl 2 +2P→2PCl 5 (90 °С)

2Cl 2 +Si→SiCl 4 (340 °С)

Реакции с соединениями других галогенов:

а) Сl 2 + 2КВг (Р) = 2КСl + Вr 2 (кипячение)

б) Сl 2 (нед.) + 2КI (р) = 2КСl + I 2 ↓

ЗСl (изб.) + 3Н 2 O+ КI = 6НСl + КIO 3 (80 °С)

Качественная реакция — взаимодействие недостатка СL 2 с КI (см. выше) и обнаружение йода по синему окрашиванию после добавления раствора крахмала.

Получение хлора в промышленности :

2NаСl (расплав) → 2Nа + Сl 2 (электролиз)

2NaCl+ 2Н 2 O→Н 2 + Сl 2 + 2NаОН (электролиз)

и в лаборатории :

4НСl (конц.) + МnO 2 = Сl 2 + МnСl 2 + 2Н 2 O

(аналогично с участием других окислителей; подробнее см. реакции для НСl и NaСl).

Хлор относится к продуктам основного химического производства, используется для получения брома и йода, хлоридов и кислородсодержащих производных, для отбеливания бумаги, как дезинфицирующее средство для питьевой воды. Ядовит.

Хлороводород НС l . Бескислородная кислота. Бесцветный газ с резким запахом, тяжелее воздуха. Молекула содержит ковалентную σ -связь Н — Сl. Термически устойчив. Очень хорошо растворим в воде; разбавленные растворы называются хлороводородной кислотой , а дымящий концентрированный раствор (35-38 %)- соляной кислотой (название дано еще алхимиками). Сильная кислота в растворе, нейтрализуется щелочами и гидратом аммиака. Сильный восстановитель в концентрированном растворе (за счет Сl — I), слабый окислитель в разбавленном растворе (за счет Н I). Составная часть «царской водки».

Качественная реакция на ион Сl — — образование белых осадков АgСl и Нg 2 Сl 2 , которые не переводятся в раствор действием разбавленной азотной кислоты.

Хлороводород служит сырьем в производстве хлоридов, хлорорганических продуктов, используется (в виде раствора) при травлении металлов, разложении минералов и руд. Уравнения важнейших реакций:

НСl (разб.) + NаОН (разб.) = NaСl + Н 2 O

НСl (разб.) + NН 3 Н 2 O = NH 4 Сl + Н 2 O

4НСl (конц., гор.) + МO 2 = МСl 2 + Сl 2 + 2Н 2 O (М = Мп, РЬ)

16НСl (конц., гор.) + 2КМnO 4(т) = 2МnСl 2 + 5Сl 2 + 8Н 2 O + 2КСl

14НСl (конц.) + К 2 Сr 2 O 7(т) = 2СrСl 3 + ЗСl 2 + 7Н 2 O + 2КСl

6НСl (конц.) + КСlO 3(Т) = КСl + ЗСl 2 + 3Н 2 O (50-80 °С)

4НСl (конц.) + Са(СlO) 2(т) = СаСl 2 + 2Сl 2 + 2Н 2 O

2НСl (разб.) + М = МСl 2 + H 2 (М = Ре, 2п)

2НСl (разб.) + МСO 3 = МСl 2 + СO 2 + Н 2 O (М = Са, Ва)

НСl (разб.) + АgNO 3 = НNO 3 + АgСl↓

Получение НСl в промышленности — сжигание Н 2 в Сl 2 (см.), в лаборатории — вытеснение из хлоридов серной кислотой:

NаСl (т) + Н 2 SO4 (конц.) = NаНSO 4 + НС l (50 °С)

2NaСl (т) + Н 2 SO 4 (конц.) = Nа 2 SO 4 + 2НСl (120 °С)

Хлориды

Хлорид натрия Na Сl . Бескислородная соль. Бытовое название поваренная соль . Белый, слабогигроскопичный. Плавится и кипит без разложения. Умеренно растворим в воде, растворимость мало зависит от температуры, раствор имеет характерный соленый вкус. Гидролизу не подвергается. Слабый восстановитель. Вступает в реакции ионного обмена. Подвергается электролизу в расплаве и растворе.

Применяется для получения водорода, натрия и хлора, соды, едкого натра и хлороводорода, как компонент охлаждающих смесей, пищевой продукт и консервирующее средство.

В природе — основная часть залежей каменной соли, или галита , и сильвинита (вместе с КСl),рапы соляных озер, минеральных примесей морской воды (содержание NaСl=2,7%). В промышленности получают выпариванием природных рассолов.

Уравнения важнейших реакций:

2NаСl (т) + 2Н 2 SO 4 (конц.) + МnO 2(т) = Сl 2 + МnSO 4 + 2Н 2 O + Na 2 SO 4 (100 °С)

10NаСl (т) + 8Н 2 SO 4 (конц.) + 2КМnO 4(т) = 5Сl 2 + 2МnSO 4 + 8Н 2 О + 5Nа 2 SO 4 + К 2 SO 4 (100°С)

6NaСl (Т) + 7Н 2 SO 4 (конц.) + К 2 Сr 2 O 7(т) = 3Сl 2 + Сr 2 (SO 4) 3 + 7Н 2 O+ ЗNа 2 SO 4 + К 2 SO 4 (100 °С)

2NаСl (т) + 4Н 2 SO 4 (конц.) + РЬO 2(т) = Сl 2 + Рb(НSO 4) 2 + 2Н 2 O + 2NaНSO 4 (50 °С)

NaСl (разб.) + АgNO 3 = NaNО 3 + АgСl↓

NaCl (ж) →2Na+Cl 2 (850°С, электролиз)

2NаСl + 2Н 2 O→Н 2 + Сl 2 + 2NаОН (электролиз)

2NаСl (р,20%) → Сl 2 + 2 N а(Н g ) “амальгама” (электролиз,на Hg -катоде)

Хлорид калия КСl . Бескислородная соль. Белый, негигроскопичный. Плавится и кипит без разложения. Умеренно растворим в воде, раствор имеет горький вкус, гидролиза нет. Вступает в реакции ионного обмена. Применяется как калийное удобрение, для получения К, КОН и Сl 2 . В природе основная составная часть (наравне с NаСl) залежей сильвинита .

Уравнения важнейших реакций одинаковы с таковыми для NаСl.

Хлорид кальция СаСl 2 . Бескислородная соль. Белый, плавится без разложения. Расплывается на воздухе за счет энергичного поглощения влаги. Образует кристаллогидрат СаСl 2 6Н 2 О с температурой обезвоживания 260 °С. Хорошо растворим в воде, гидролиза нет. Вступает в реакции ионного обмена. Применяется для осушения газов и жидкостей, приготовления охлаждающих смесей. Компонент природных вод, составная часть их «постоянной» жесткости.

Уравнения важнейших реакций:

СаСl 2(Т) + 2Н 2 SO 4 (конц.) = Са(НSO 4) 2 + 2НСl (50 °С)

СаСl 2(Т) + Н 2 SO 4 (конц.) = СаSO 4 ↓+ 2НСl (100 °С)

СаСl 2 + 2NaОН (конц.) = Са(ОН) 2 ↓+ 2NaCl

ЗСаСl 2 + 2Nа 3 РO 4 = Са 3 (РO 4) 2 ↓ + 6NaCl

СаСl 2 + К 2 СO 3 = СаСО 3 ↓ + 2КСl

СаСl 2 + 2NaF = СаF 2 ↓+ 2NаСl

СаСl 2(ж) → Са + Сl 2 (электролиз,800°С)

Получение:

СаСО 3 + 2НСl = СаСl 2 + СO 3 + Н 2 O

Хлорид алюминия АlСl 3 . Бескислородная соль. Белый, легкоплавкий,сильнолетучий. В паре состоит из ковалентных мономеров АlСl 3 (треугольное строение,sр 2 гибридизация, преобладают при 440-800 °С) и димеров Аl 2 Сl 6 (точнее, Сl 2 АlСl 2 АlСl 2 , строение — два тетраэдра с общим ребром, sр 3 -гибридизация, преобладают при 183-440 °С). Гигроскопичен, па воздухе «дымит». Образует кристаллогидрат, разлагающийся при нагревании. Хорошо растворим в воде (с сильным экзо-эффектом), полностью диссоциирует на ионы, создает в растворе сильнокислотную среду вследствие гидролиза. Реагирует со щелочами, гидратом аммиака. Восстанавливается при электролизе расплава. Вступает в реакции ионного обмена.

Качественная реакция на ион Аl 3+ — образование осадка АlРO 4 , который переводится в раствор концентрированной серной кислотой.

Применяется как сырье в производстве алюминия, катализатор в органическом синтезе и при крекинге нефти, переносчик хлора в органических реакциях. Уравнения важнейших реакций:

АlСl 3 . 6Н 2 O →АlСl(ОН) 2 (100-200°С, — HCl , H 2 O ) →Аl 2 O 3 (250-450°С, -HCl,H2O)

АlСl 3(т) + 2Н 2 O (влага) = АlСl(ОН) 2(т) + 2НСl (белый «дым»)

АlCl 3 + ЗNаОН (разб.) = Аl(OН) 3 (аморф.) ↓ + ЗNаСl

АlСl 3 + 4NаОН (конц.) = Nа[Аl(ОН) 4 ] + ЗNаСl

АlСl 3 + 3(NН 3 . Н 2 O) (конц.) = Аl(ОН) 3(аморф.) + ЗNН 4 Сl

АlCl 3 + 3(NН 3 Н 2 O) (конц.) =Аl(ОН)↓ + ЗNН 4 Сl + Н 2 O (100°С)

2Аl 3+ + 3Н 2 O + ЗСО 2- 3 = 2Аl(ОН) 3 ↓ + ЗСO 2 (80°С)

2Аl 3+ =6Н 2 O+ 3S 2- = 2Аl(ОН) 3 ↓+ 3Н 2 S

Аl 3+ + 2НРО 4 2- — АlРO 4 ↓ + Н 2 РO 4 —

2АlСl 3 →2Аl + 3Сl 2 (электролиз,800 °С ,в расплаве N аС l )

Получение АlСl в промышленност и — хлорирование каолина, глинозёма или боксита в присутствии кокса:

Аl 2 O 3 + 3С (кокс) + 3Сl 2 = 2АlСl 3 + 3СО (900 °С)

Хлорид железа( II ) F еС l 2 . Бескислородная соль. Белый (гидрат голубовато-зеленый), гигроскопичный. Плавится и кипит без разложения. При сильном нагревании летуч в потоке НСl. Связи Fе — Сl преимущественно ковалентные, пар состоит из мономеров FеСl 2 (линейное строение, sр-гибридизация) и димеров Fе 2 Сl 4 . Чувствителен к кислороду воздуха (темнеет). Хорошо растворим в воде (с сильным экзо-эффектом), полностью диссоциирует на ионы, слабо гидролизуется по катиону. При кипячении раствора разлагается. Реагирует с кислотами, щелочами, гидратом аммиака. Типичный восстановитель. Вступает в реакции ионного обмена и комплексообразования.

Применяется для синтеза FеСl и Fе 2 О 3 , как катализатор в органическом синтезе, компонент лекарственных средств против анемии.

Уравнения важнейших реакций:

FеСl 2 4Н 2 O = FеСl 2 + 4Н 2 O (220 °С, в атм. N 2 )

FеСl 2 (конц.) + Н 2 O=FеСl(ОН)↓ + НСl (кипячение)

FеСl 2(т) + Н 2 SO 4 (конц.) = FеSO 4 + 2НСl (кипячение)

FеСl 2(т) + 4HNO 3 (конц.) = Fе(NO 3) 3 + NO 2 + 2НСl + Н 2 O

FеСl 2 + 2NаОН (разб.) = Fе(ОН) 2 ↓+ 2NaСl (в атм. N 2 )

FеСl 2 + 2(NН 3 . Н 2 O) (конц.) = Fе(ОН) 2 ↓ + 2NН 4 Cl (80 °С)

FеСl 2 + Н 2 = 2НСl + Fе (особо чистое,выше 500 °С)

4FеСl 2 + O 2 (воздух) → 2Fе(Сl)O + 2FеСl 3 (t )

2FеСl 2(р) + Сl 2 (изб.) = 2FеСl 3(р)

5Fе 2+ + 8Н + + МnО — 4 = 5Fе 3+ + Мn 2+ + 4Н 2 O

6Fе 2+ + 14Н + + Сr 2 O 7 2- = 6Fе 3+ + 2Сr 3+ +7Н 2 O

Fе 2+ + S 2- (разб.) = FеS↓

2Fе 2+ + Н 2 O + 2СО 3 2- (разб.) = Fе 2 СO 3 (OН) 2 ↓+ СO 2

FеСl 2 →Fе↓ + Сl 2 (90°С, в разб. НСl, электролиз)

Получени е: взаимодействие Fе с соляной кислотой:

Fе + 2НСl = FеСl 2 + Н 2

промышленности используют хлороводород и ведут процесс при 500 °С).

Хлорид железа( III ) F еС l 3 . Бескислородная соль. Черно-коричневый (темно-красный в проходящем свете, зеленый в отраженном), гидрат темно-желтый. При плавлении переходит в красную жидкость. Весьма летуч, при сильном нагревании разлагается. Связи Fе — Сl преимущественно ковалентные. Пар состоит из мономеров FеСl 3 (треугольное строение, sр 2 -гибридизация, преобладают выше 750 °С) и димеров Fе 2 Сl 6 (точнее, Сl 2 FеСl 2 FеСl 2 , строение — два тетраэдра с общим ребром, sр 3 -гибридизация, преобладают при 316-750 °С). Кристаллогидрат FеСl . 6Н 2 O имеет строение Сl 2Н 2 O. Хорошо растворим в воде, раствор окрашен в желтый цвет; сильно гидролизован по катиону. Разлагается в горячей воде, реагирует со щелочами. Слабый окислитель и восстановитель.

Применяется как хлорагент, катализатор в органическом синтезе, протрава при крашении тканей, коагулянт при очистке питьевой воды, травитель медных пластин в гальванопластике, компонент кровоостанавливающих препаратов.

Уравнения важнейших реакций:

FеСl 3 6Н 2 O=Сl + 2Н 2 O (37 °С)

2(FеСl 8 6Н 2 O)=Fе 2 O 3 + 6НСl + 9Н 2 O (выше 250 °С)

FеСl 3 (10%) + 4Н 2 O = Сl — + + (желт.)

2FеСl3 (конц.) + 4Н 2 O = + (желт.) + — (бц.)

FеСl 3 (разб., конц.) + 2Н 2 O →FеСl(ОН) 2 ↓ + 2НСl (100 °С)

FеСl 3 + 3NaОН (разб.) = FеО(ОН)↓ + Н 2 O + 3NаСl (50 °С)

FеСl 3 + 3(NН 3 Н 2 O) (конц, гор.) =FeO(OH)↓+H 2 O+3NH 4 Cl

4FеСl 3 + 3O 2 (воздух) =2Fе 2 O 3 + 3Сl 2 (350-500 °С)

2FеСl 3(р) + Сu→ 2FеСl 2 + СuСl 2

Хлорид аммония N Н 4 Сl . Бескислородная соль, техническое название нашатырь. Белый, летучий, термически неустойчивый. Хорошо растворим в воде (с заметным эндо-эффектом, Q = -16 кДж), гидролизуется по катиону. Разлагается щелочами при кипячении раствора, переводит в раствор магний и гидроксид магния. Вступает в реакцию кон мутации с нитратами.

Качественная реакция на ион NН 4 + — выделение NН 3 при кипячении со щелочами или при нагревании с гашёной известью.

Применяется в неорганическом синтезе, в частности для создания слабокислотной среды, как компонент азотных удобрений, сухих гальванических элементов, при пайке медных и лужении стальных изделий.

Уравнения важнейших реакций:

NH 4 Cl (т) ⇌ NH 3(г) + HCl (г) (выше337,8 °С)

NН 4 Сl + NаОН (насыщ.) = NаСl + NН 3 + Н 2 O (100 °С)

2NН 4 Сl (Т) + Са(ОН) 2(т) = 2NН 3 + СаСl 2 + 2Н 2 O (200°С)

2NН 4 Сl (конц.) +Mg= Н 2 + МgСl 2 + 2NН 3 (80°С)

2NН 4 Сl (конц., гор.) + Мg(ОН) 2 = MgСl 2 + 2NН 3 + 2Н 2 O

NH + (насыщ.) + NO — 2 (насыщ.) =N 2 + 2Н 2 O (100°С)

NН 4 Сl + КNO 3 = N 2 O + 2Н 2 O + КСl (230-300 °С)

Получение : взаимодействие NH 3 с НСl в газовой фазе или NН 3 Н 2 О с НСl в растворе.

Гипохлорит кальция Са(С l О) 2 . Соль хлорноватистой кислоты НСlO. Белый, при нагревании разлагается без плавления. Хорошо растворим в холодной воде (образуется бесцветный раствор), гидролизуется по аниону. Реакционноспособный, полностью разлагается горячей водой, кислотами. Сильный окислитель. При стоянии раствор поглощает углекислый газ из воздуха. Является активной составной частью хлорной (белильной) извести — смеси неопределенного состава с СаСl 2 и Са(ОН) 2 . Уравнения важнейших реакций:

Са(СlO) 2 = СаСl 2 + O 2 (180 °С)

Са(СlO) 2(т) + 4НСl (конц.) = СаСl + 2Сl 2 + 2Н 2 O (80 °С)

Са(СlO) 2 + Н 2 O + СO 2 = СаСО 3 ↓ + 2НСlO (на холоду)

Са(СlO) 2 + 2Н 2 O 2 (разб.) = СаСl 2 + 2Н 2 O + 2O 2

Получение:

2Са(ОН) 2 (суспензия) + 2Сl 2(г) = Са(СlO) 2 + СаСl 2 + 2Н 2 O

Хлорат калия КС lO 3 . Соль хлорноватой кислоты НСlO 3 , наиболее известная соль кислородсодержащих кислот хлора. Техническое название — бертоллетова соль (по имени ее первооткрывателя К.-Л. Бертолле, 1786). Белый, плавится без разложения, при дальнейшем нагревании разлагается. Хорошо растворим в воде (образуется бесцветный раствор), гидролиза нет. Разлагается концентрированными кислотами. Сильный окислитель при сплавлении.

Применяется как компонент взрывчатых и пиротехнических смесей, головок спичек, в лаборатории — твердый источник кислорода.

Уравнения важнейших реакций:

4КСlO 3 = ЗКСlO 4 + КСl (400 °С)

2КСlO 3 = 2КСl + 3O 2 (150-300 °С, кат. Мп O 2 )

КСlO 3(Т) + 6НСl (конц.) = КСl + 3Сl 2 + ЗН 2 O (50-80 °С)

3КСlO 3(Т) + 2Н 2 SO 4 (конц., гор.) = 2СlO 2 + КСlO 4 + Н 2 O + 2КНSO 4

(диоксид хлора на свету взрывается: 2С lO 2(Г) = Сl 2 + 2 O 2 )

2КСlO 3 + Е 2(изб.) = 2КЕO 3 + Сl 2 (в разб. Н NO 3 , Е = В r , I )

KClO 3 +H 2 O→H 2 +KClO 4 (Электролиз)

Получение КСlO 3 в промышленности — электролиз горячего раствора КСl (продукт КСlO 3 выделяется на аноде):

КСl + 3Н 2 O →Н 2 + КСlO 3 (40-60 °С,Электролиз)

Бромид калия КВ r . Бескислородная соль. Белый, негигроскопичный, плавится без разложения. Хорошо растворим в воде, гидролиза нет. Восстановитель (более слабый, чем

Качественная реакция на ион Вr — вытеснение брома из раствора КВr хлором и экстракция брома в органический растворитель, например ССl 4 (в результате водный слой обесцвечивается, органический слой окрашивается в бурый цвет).

Применяется как компонент травителей при гравировке по металлам, составная часть фотоэмульсий, лекарственное средство.

Уравнения важнейших реакций:

2КВr (т) + 2Н 2 SO 4 (КОНЦ., гор,) + МnO 2(т) =Вr 2 + МnSO 4 + 2Н 2 O + К 2 SO 4

5Вr — + 6Н + + ВrО 3 — = 3Вr 2 + 3Н 2 O

Вr — + Аg + =АgВr↓

2КВr (р) +Сl 2(Г) =2КСl + Вг 2(р)

КВr + 3Н 2 O→3Н 2 + КВrО 3 (60-80 °С, электролиз)

Получение:

К 2 СO 3 + 2НВr = 2КВ r + СO 2 + Н 2 O

Иодид калия К I . Бескислородная соль. Белый, негигроскопичный. При хранении на свету желтеет. Хорошо растворим в воде, гидролиза нет. Типичный восстановитель. Водный раствор КI хорошо растворяет I 2 за счет комплексообразования.

Качественная реакция на ион I — вытеснение иода из раствора КI недостатком хлора и экстракция иода в органический растворитель, например ССl 4 (в результате водный слой обесцвечивается, органический слой окрашивается в фиолетовый цвет).

Уравнения важнейших реакций:

10I — + 16Н + + 2МnO 4 — = 5I 2 ↓ + 2Мn 2+ + 8Н 2 O

6I — + 14Н + + Сr 2 O 7 2- =3I 2 ↓ + 2Сr 3+ + 7Н 2 O

2I — + 2Н + + Н 2 O 2 (3%) = I 2 ↓+ 2Н 2 O

2I — + 4Н + + 2NO 2 — = I 2 ↓ + 2NO + 2Н 2 O

5I — + 6Н + + IO 3 — = 3I 2 + 3Н 2 O

I — + Аg + = АgI (желт .)

2КI (р) + Сl 2(р) (нед.) =2КСl + I 2 ↓

КI + 3Н 2 O + 3Сl 2(р) (изб.) = КIO 3 + 6НСl (80°С)

КI (Р) + I 2(т) =K) (Р) (кор.) («йодная вода»)

КI + 3Н 2 O→ 3Н 2 + КIO 3 (электролиз,50-60 °С)

Получение:

К 2 СO 3 + 2НI = 2 К I + СO 2 + Н 2 O