Tl431 в блоке питания. Схема включения стабилитрона tl431 и проверка микросхемы мультиметром

Микросхема TL431 datasheet создана в конце 70-х годов, однако и по сегодняшний день она широко применяется в радиолюбительской деятельности и в промышленности. Эта микросхема представляет собой интегральный регулируемый стабилизатор, который нашел широкое применение в различных блоках питания.

Описание работы

TL431 datasheet имеет всего три вывода, однако в ее корпусе спрятано десять транзисторов (компаратор). Функции этого устройства и обычного стабилизатора похожи. Однако, благодаря подобному усложнению, микросхема имеет более высокий уровень термостабильности, а также повышенную крутизну характеристики. Главной особенностью такого прибора является способность при помощи внешнего делителя изменять напряжение стабилизации в пределах 2,5-30 В. У некоторых моделей нижний порог может составлять 1,25 В. Схема компаратора, интегрированного в изделие datasheet TL431, состоит из следующих компонентов:

  • встроенный источник (весьма стабильный) опорного напряжения 2,5 В, который подключается к инверсному входу компаратора;
  • один вход прямого уровня;
  • на выходе компаратора транзистор, эмиттер и коллектор которого объединены с контактами питания;
  • диод для защиты от переполюсовки.

Транзистор имеет максимальный ток нагрузки 100 мА, а максимальное напряжение - 36 В. Для того чтобы сработал встроенный компаратор (соответственно, открылся транзистор на выходе микросхемы), необходим

о на его вход подать опорного. На входе микросхемы включен состоящий из двух резисторов, он делит величину напряжения пополам. Это значит, что компаратор откроется при поступлении на вход схемы 5 В, на выходе делителя же получаем 2,5 В. Если увеличивать сопротивление резистора, то необходимо также увеличивать и напряжение питания. Получается, что данная микросхема может работать в качестве стабилитрона в пределах 2,5-36 В.

Назначение и сфера применения

Не существует ни одного в котором бы не было микросхемы TL431 datasheet. Также ее можно встретить практически во всех импульсных маломощных источниках питания, например, в зарядках для мобильных телефонов. Эти микросхемы можно использовать не только по прямому назначению (стабилитрон для блоков питания), но и создавать на их базе различные световые индикаторы и звуковые сигнализаторы. С помощью таких приборов отслеживают множество различных параметров (но основным все-таки является напряжение). Существует множество схем на базе TL431 datasheet, благодаря которым можно собрать устройства, контролирующие уровень жидкости в емкости, влажность и температуру, давление газа или жидкости, освещенность. Перечисленные варианты - не единственно возможные, применение данной микросхемы на самом деле весьма широко, все зависит от желания конструктора.

Очень часто начинающие радиолюбители интересуются, чем можно заменить TL431. Аналог, конечно, существует. Так, можно использовать импортные изделия КА431 и отечественные устройства КР142ЕН19А, К1156ЕР5х.

Подведем итоги

Компании "TEXAS INSTRUMENTS" весьма надежна, имеет широкий рабочий диапазон, проста в эксплуатации, а самое главное, имеет доступную цену. Благодаря своим характеристикам, она выпускается более сорока лет и до сих пор остается востребованной.

Интегральный стабилизатор TL431 применяется в основном в блоках питания. Однако, для него можно найти еще немало применений. Некоторые из таких схем приведены в этой статье.

В этой статье будет рассказано о простых и полезных устройствах, выполненных с применением микросхемы TL431 . Но в данном случае не надо пугаться слова «микросхема», у нее всего три вывода, и внешне она похожа на простой маломощный транзистор в корпусе TO90.

Сначала немного истории

Уж так повелось, что всем электронщикам известны магические числа 431, 494. Что это такое?

Компания TEXAS INSTRUMENTS стояла у самых истоков полупроводниковой эры. Все это время она находится на первых местах в списке мировых лидеров в производстве электронных компонентов, прочно удерживаясь в первой десятке или, как чаще говорят, в мировом рейтинге TOP-10. Первая интегральная микросхема была создана еще в 1958 году сотрудником этой компании Джеком Килби.

Сейчас компания TI выпускает широкий ассортимент микросхем, название которых начинается с префиксов TL и SN. Это соответственно аналоговые и логические (цифровые) микросхемы, которые навсегда вошли в историю компании TI и до сих пор находят широчайшее применение.

В числе самых первых в списке «магических» микросхем следует, наверно, считать . В трехвыводном корпусе этой микросхемы спрятано 10 транзисторов, а функция, выполняемая ею, одинакова с обычным стабилитроном (диод Зенера).

Но за счет подобного усложнения микросхема обладает более высокой термостабильностью и повышенной крутизной характеристики. Главная же ее особенность в том, что при помощи напряжение стабилизации можно изменять в пределах 2,5…30 В. У последних моделей нижний порог составляет 1,25 В.

TL431 была создана сотрудником компании TI Барни Холландом в начале семидесятых годов. Тогда он занимался копированием микросхемы стабилизатора другой компании. У нас бы сказали сдирания, а не копирования. Так вот Барни Холланд позаимствовал из оригинальной микросхемы источник опорного напряжения, а уже на его основе создал отдельную микросхему-стабилизатор. Сначала она называлась TL430, а после некоторых усовершенствований получила название TL431.

С тех пор прошло немало времени, а нет сейчас ни одного компьютерного блока питания, где бы она не нашла применения. Она также находит применение практически во всех маломощных импульсных источниках питания. Один из таких источников теперь есть в каждом доме, - это для сотовых телефонов. Такому долгожительству можно только позавидовать. На рисунке 1 показана функциональная схема TL431.

Рисунок 1. Функциональная схема TL431.

Также Барни Холландом была создана не менее известная и до сих пор востребованная микросхема TL494. Это двухтактный ШИМ - контроллер, на базе которого было создано множество моделей импульсных источников питания. Поэтому число 494 также по праву относится к «магическим».

А теперь перейдем к рассмотрению различных конструкций на базе микросхемы TL431.

Индикаторы и сигнализаторы

Микросхема TL431 может применяться не только по своему прямому назначению как стабилитрон в блоках питания. На ее основе возможно создание различных световых индикаторов и даже звуковых сигнализаторов. С помощью подобных устройств можно отслеживать много различных параметров.

В первую очередь это просто электрическое напряжение. Если же какую либо физическую величину с помощью датчиков представить в виде напряжения, то можно сделать устройство, контролирующее, например, уровень воды в емкости, температуру и влажность, освещенность или давление жидкости или газа.

Работа такого сигнализатора основана на том, что при напряжении на управляющем электроде стабилитрона DA1 (вывод 1) менее 2,5 В стабилитрон закрыт, через него протекает лишь небольшой ток, как правило, не более 0,3…0,4 мА. Но этого тока достаточно для очень слабого свечения светодиода HL1. Чтобы этого явления не наблюдалось, достаточно параллельно светодиоду подключить резистор сопротивлением примерно 2…3 КОм. Схема сигнализатора превышения напряжения показана на рисунке 2.

Рисунок 2. Сигнализатор превышения напряжения.

Если же напряжение на управляющем электроде превысит 2,5 В, стабилитрон откроется и засветится светодиод HL1. необходимое ограничение тока через стабилитрон DA1 и светодиод HL1 обеспечивает резистор R3. Максимальный ток стабилитрона составляет 100 мА, в то время как тот же параметр у светодиода HL1 всего 20 мА. Именно из этого условия и рассчитывается сопротивление резистора R3. более точно это сопротивление можно рассчитать по нижеприведенной формуле.

R3 = (Uпит - Uhl - Uda)/Ihl. Здесь использованы следующие обозначения: Uпит - напряжение питания, Uhl - прямое падение напряжения на светодиоде, Uda напряжение на открытой микросхеме (обычно 2В), Ihl ток светодиода (задается в пределах 5…15 мА). Также не следует забывать о том, что максимальное напряжение для стабилитрона TL431 всего 36 В. Этот параметр также превышать нельзя.

Уровень срабатывания сигнализатора

Напряжение на управляющем электроде, при котором загорается светодиод HL1 (Uз) задается делителем R1, R2. параметры делителя рассчитываются по формуле:

R2 = 2,5*R1/(Uз - 2,5). Для более точной настройки порога срабатывания можно вместо резистора R2 установить подстроечный, номиналом раза в полтора больше, чем получилось по расчету. После того, как настойка произведена, его можно заменить постоянным резистором, сопротивление которого равно сопротивлению введенной части подстроечного.

Иногда требуется контролировать несколько уровней напряжения. В этом случае потребуются три таких сигнализатора, каждый из которых настроен на свое напряжение. Таким образом возможно создание целой линейки индикаторов, линейной шкалы.

Для питания цепи индикации, состоящей из светодиода HL1 и резистора R3, можно применить отдельный источник питания, даже нестабилизированный. В этом случае контролируемое напряжение подается на верхний по схеме вывод резистора R1, который следует отключить от резистора R3. При таком включении контролируемое напряжение может находиться в пределах от трех, до нескольких десятков вольт.

Рисунок 3. Индикатор пониженного напряжения.

Отличие этой схемы от предыдущей в том, что светодиод включен по-другому. Такое включение называется инверсным, поскольку светодиод зажигается в том случае, когда микросхема закрыта. В случае, если контролируемое напряжение превышает порог установленный делителем R1, R2 микросхема открыта, и ток протекает через резистор R3 и выводы 3 - 2 (катод - анод) микросхемы.

На микросхеме в этом случае присутствует падение напряжения 2 В, которого не достаточно для зажигания светодиода. Чтобы светодиод гарантированно не зажегся, последовательно с ним установлены два диода. Некоторые типы светодиодов, например синие, белые и некоторые типы зеленых, зажигаются, когда напряжение на них превышает 2,2 В. В этом случае вместо диодов VD1, VD2 устанавливаются перемычки из проволоки.

Когда контролируемое напряжение станет меньше установленного делителем R1, R2 микросхема закроется, напряжение на ее выходе будет намного больше 2 В, поэтому светодиод HL1 зажжется.

Если требуется контролировать только изменение напряжения индикатор можно собрать по схеме, представленной на рисунке 4.

Рисунок 4. Индикатор изменения напряжения.

В этом индикаторе применен двухцветный светодиод HL1. Если контролируемое напряжение превышает пороговое значение, светится красный светодиод, а если напряжение понижено, то горит зеленый.

В случае, когда напряжение находится вблизи заданного порога (примерно 0,05…0,1 В) погашены оба индикатора, так как передаточная характеристика стабилитрона имеет вполне определенную крутизну.

Если требуется следить за изменением какой-либо физической величины, то резистор R2 можно заменить датчиком, изменяющим сопротивление под действием окружающей среды. Подобное устройство показано на рисунке 5.

Рисунок 5. Схема контроля параметров окружающей среды.

Условно на одной схеме показано сразу несколько датчиков. Если это будет , то получится . Пока освещенность большая, фототранзистор открыт, и его сопротивление невелико. Поэтому напряжение на управляющем выводе DA1 меньше порогового, вследствие этого светодиод не светит.

По мере снижения освещенности сопротивление фототранзистора увеличивается, что приводит к возрастанию напряжения на управляющем выводе DA1. Когда это напряжение превысит пороговое (2,5 В), стабилитрон открывается и зажигается светодиод.

Если вместо фототранзистора к входу устройства подключить терморезистор, например серии ММТ, получится индикатор температуры: при понижении температуры светодиод будет загораться.

Эту же схему можно применить в качестве , например, земли. Для этого вместо терморезистора или фототранзистора следует подключить электроды из нержавеющей стали, которые на некотором расстоянии друг от друга воткнуть в землю. При высыхании земли до уровня, определенного при настройке, светодиод зажжется.

Порог срабатывания устройства во всех случаях устанавливается с помощью переменного резистора R1.

Кроме перечисленных световых индикаторах на микросхеме TL431 возможно собрать и звуковой индикатор. Схема такого индикатора показана на рисунке 6.

Рисунок 6. Звуковой индикатор уровня жидкости.

Для контроля уровня жидкости, например воды в ванне, к схеме подключается датчик из двух нержавеющих пластин, которые расположены на расстоянии нескольких миллиметров друг от друга.

Когда вода достигнет датчика, его сопротивление уменьшается, а микросхема через резисторы R1 R2 входит в линейный режим. Поэтому возникает автогенерация на резонансной частоте пьезокерамического излучателя НА1, на которой и зазвучит звуковой сигнал.

В качестве излучателя можно применить излучатель ЗП-3. питание устройства от напряжения 5…12 В. Это позволяет питать его даже от гальванических батарей, что делает возможным использование его в разных местах, в том числе и в ванной.

Основная область применения микросхемы TL434, конечно же блоки питания. Но, как видим, только этим возможности микросхемы не ограничиваются.

Борис Аладышкин

Электронный компонент tl 431 - это одна из интегральных микросхем, чьё производство поставлено на массовый поток, начиная, с 1978 года. Она широко используется в большинстве компьютерных блоков питания, телевизоров и другой бытовой технике в качестве прецизионного программируемого источника опорного напряжения. На практике сложилось несколько схем включения tl431.

Устройство электронного элемента

Микросхема обладает простой конструкцией, состоящей из следующих элементов: корпуса, операционного усилителя (ОУ), выходного tl431 транзистора, а также источника опорного напряжения. Особенностью этой микросхемы является то, что она выполняет функции стабилитрона.

Источник опорного напряжения на 2.5 вольта, обладающий высокой стабильностью, подключается к инверсному входу ОУ (-), эмиттеру транзистора и землёй с помощью двух общих точек в цепь опорного напорного также включён кремниевый диод. Он предназначен для предотвращения создания обратного тока и защищает от переполюсовки. Прямой вход ® предназначен для приёма сигнала с других плат, а также питания усилителя. Он подключается через диод к коллектору транзистора также через общую точку. Выход ОУ подключён к базе транзистора.

Следует помнить, что транзистор, используемый в микросхемах данной серии, способен выдержать нагрузки до 0.1 А и 36 В.

Принцип работы

Работа микросхемы основана на принципе превышения напряжения поданного на прямой вход ОУ над опорным. При U (напряжении на прямом входе) меньше или равным Vref (опорном напряжении на выходе) будет подобное низкое напряжение, из-за чего транзистор не откроется, а ток по цепи анод-катод не будет поступать. Как только U превысит Vref на выходе ОУ, образуется напряжение, способное открыть транзистор и заставить ток протекать от катода к аноду, что заставляет микросхему работать.

Цоколёвка tl341

TL 341 представляет собой трёхвыводную микросхему. Каждая ножка имеет собственное название 1 - reference (выход), 2 - anode (анод) и 3 - catode (катод).

На практике цоколёвка бывает различной и зависит от типа корпуса выбранного производителем при изготовлении изделия. TL431 выпускается в большом количестве разных корпусов, от древних TO-92 до современных SOT-23. Распиновка tl431 в зависимости от вида корпуса изображены на рисунке 3.

Аналогами tl431 отечественного производства являются микросхемы КР142ЕН19А и К1156ЕР5Т. К зарубежным аналогам можно отнести:

  • KA431AZ;
  • KIA431;
  • HA17431VP;
  • IR9431N;
  • AME431BxxxxBZ;
  • AS431A1D;
  • LM431BCM.

Технические характеристики

Основными техническим характеристиками микросхемы tl 341 являются:

Из характеристик видно, что микросхему можно использовать при довольно обширном диапазоне напряжения, однако пропускная способность по току весьма невелика. Чтобы получить более серьёзные, к катодной цепи подключают мощные транзисторы, которые регулируют выходные параметры.

Схемы включения

Микросхема tl 431 представляет собой стабилитрон интегрального типа. Она обладает тремя схемами включения:

  • на 2.48 В (1);
  • на 3, 3 В (2);
  • на 14 В.

Вариант 1: схема на 2,48 В.

Схема включения стабилитрона на 2.48 вольта оснащена одноступенчатым преобразователем. Среднее значение рабочего тока в подобной системе составляет 5.3 А. К выводу ref (цепь опорного напряжения) монтируется цепь, состоящая из двух параллельно соединённых резисторов (по 2.4 и 2.26 кОм). На эти резисторы предварительно подаётся напряжение равное 5 В, которое после прохождения цепи превращается в 2,48.

С целью повышения чувствительности стабилитрона применяются разнообразные модуляторы, в основном, дипольного типа с ёмкостью менее 3 пФ (пикофарад). Стабилитроны подключают к катоду.

Вариант 2: схема включения на 3,3 В.

В схеме включения на 3,3 В также используется одноступенчатый преобразователь и резистор на 1 кОм, подключённый к катоду. Перед сопротивлением ставится сторонний источник питания на 3 В. К выводу (ref) подключается конденсатор ёмкостью 10 нФ, соединённый с землёй. Анод в подобной схеме сажается напрямую на землю, а катодная и входная цепи соединяются двумя общими точками.

Проблемой этой схемы включения является большая вероятность возникновения короткого замыкания (КЗ). Для того чтобы снизить риск возникновения КЗ, после стабилитронов монтируют предохранитель.

Чтобы усиливать сигнал к выводу подключают специальные фильтры. В такой схеме включения средние показатели напряжения и тока составляют 5 В/ 3.5 А, а точность стабилизации менее 3%. Стабилитрон подключается через векторный переходник поэтому нужно подбирать транзистор резонного типа Средняя ёмкость модулятора должна составлять 4.2 пФ. Для увеличения проводимости тока можно использовать триггеры.

Независимые устройства на базе микросхемы

Эту микросхему используют в блоках питания телевизоров и компьютером. Однако на её базе можно составить независимые электрические схемы некоторыми, из которых являются:

  • стабилизатор тока;
  • звуковой индикатор.

Стабилизатор тока

Стабилизатор тока - это одна из самых простых схем, которые можно реализовать на микросхеме tl 341. Он состоит из следующих элементов:

  • источника питания;
  • сопротивления R 1, подключённого с помощью общей точки к + линии питания;
  • шунтирующего сопротивления R 2 к - линии питания;
  • транзистора, чей эмиттер подключён к - линии через резистор R 2, коллектор к выходу - линии, а база через общую точку к катоду микросхемы;
  • микросхемы tl 341, чей анод подключён к - линии с помощью общей токи, а вывод ref включён в эмиттерную цепь транзистора также с помощью общей точки.

Основную роль в данной схеме выполняет шунтирующий резистор R 2, который за счёт обратной связи устанавливает значение, напряжение равное 2,5 В. Из-за этого выходной ток будет принимать следующий вид: I=2,5/R2.

Звуковой индикатор

Звуковой индикатор на базе tl 341 представляет собой простую схему, изображённую на рисунке 5

Такой звуковой индикатор можно использовать для отслеживания уровня воды в какой-либо ёмкости. Датчик представляет собой электронную схему в корпусе с двумя выводными электродами, изготовленными из нержавеющей стали, один из которых расположен на 20 мм выше другого.

В момент соприкосновения выводов датчика с водой происходит снижение сопротивления и осуществляется переход tl 341 в линейный режим через резисторы R 1и R 2. Это способствует появлению автогенирации на резонансной частоте и образованию звукового сигнала.

Проверка работоспособности с помощью мультиметра

Вопросом о том, как проверить tl431 с помощью мультиметра, задаются многие. Ответ на него достаточно прост для того, чтобы проверить микросхему tl341 или её модификации tl431a необходимо выполнить следующие действия:

  1. Собрать простую тестовую схему с использованием микросхемы и ключа.
  2. Замкнуть цепь переключателя и провести измерения. Мультиметр должен показывать значение опорного напряжения - 2,5 В.
  3. Разомкнуть цепь и провести измерения. На дисплее измерительного прибора должно быть 5 В.

Добрый день, друзья!

Сегодня мы с вами познакомимся с еще одной «железкой», которая используется в компьютерной технике. Она применяется не так часто, как, скажем, или , но тоже достойна внимания .

Что это такое – источник опорного напряжения TL431?

В блоках питания персональных компьютеров можно встретить микросхему источника опорного напряжения (ИОН) TL431.

Можно рассматривать ее как регулируемый стабилитрон.

Но это именно микросхема, так как в ней помещено более десятка транзисторов, не считая других элементов.

Стабилитрон – это такая штуковина, которая поддерживает (стремится поддержать) постоянное напряжение на нагрузке. «А зачем это нужно?» – спросите вы.

Дело в том, что микросхемы, из которых состоит компьютер – и большие и малые – могут работать лишь в определенном (не очень большом) диапазоне питающих напряжений. При превышении диапазона весьма вероятен выход их из строя.

Поэтому в (не только компьютерных) применяются схемы и компоненты для стабилизации напряжения.

При определенном диапазоне напряжений между анодом и катодом (и определенном диапазоне токов катода) микросхема обеспечивает на своем выходе ref опорное напряжение 2,5 В относительно анода.

Используя внешние цепи (резисторы) можно варьировать напряжение между анодом и катодом в достаточно широких пределах – от 2,5 до 36 В.

Таким образом, нам не нужно искать стабилитроны на определенное напряжение! Можно просто изменять номиналы резисторов и получить нужное нам уровень напряжения.

В компьютерных блоках питания существует источник дежурного напряжения + 5VSB.

Если вилка блока питания вставлена в сеть, оно присутствует на одном из контактов основного питающего разъема — даже если компьютер не включен.

При этом часть компонентов материнской платы компьютера находится под этим напряжением .

Именно с помощью него и происходит запуск основной части блока питания – сигналом с материнской платы. В формировании этого напряжения часто участвует и микросхема TL431.

При выходе ее из строя величина дежурного напряжения может отличаться — и довольно сильно — от номинальной величины.

Чем это может нам грозить?

Если напряжение +5VSB будет больше чем надо, компьютер может «зависать», так как часть микросхем материнской платы питается повышенным напряжением.

Иногда такое поведение компьютера вводит неопытного ремонтника в заблуждение. Ведь он измерил основные питающие напряжения блока питания +3,3 В, +5 В, +12 В – и увидел, что они находятся в пределах допуска.

Он начинает копать в другом месте и тратит массу времени на поиск неисправности. А надо было просто измерить и напряжение дежурного источника!

Напомним, что напряжение +5VSB должно находиться в пределах 5% допуска, т.е. лежать в диапазоне 4,75 – 5,25 В.

Если напряжение дежурного источника будет меньше необходимого, компьютер может вообще не запуститься .

Как проверить TL431?

«Прозвонить» эту микросхему как обычный стабилитрон нельзя.

Чтобы убедиться в ее исправности, нужно собрать небольшую схему для проверки.

При этом выходное напряжение в первом приближении описывается формулой

Vo = (1 + R2/R3) * Vref (см даташит*), где Vref — опорное напряжение, равное 2,5 В.

При замыкании кнопки S1 выходное напряжение будет иметь величину 2,5 В (опорное напряжение), при отпускании ее – величину 5 В.

Таким образом, нажимая и отжимая кнопку S1 и измеряя сигнал на выходе схемы, можно убедиться в исправности (или неисправности) микросхемы.

Проверочную схему можно сделать в виде отдельного модуля, используя 16-контактный разъем для DIP-микросхемы с шагом выводов 2,5 мм. Питание и щупы тестера подключаются при этом к выходным клеммам модуля.

Для проверки микросхемы нужно вставить ее в разъем, понажимать кнопку и посмотреть на дисплей тестера.

Если микросхема не вставлена в разъем, выходное напряжение будет равным примерно 10 В.

Вот и все! Просто, не правда ли?

*Даташит – это справочные данные (data sheets) на электронные компоненты. Их можно найти поисковиком в Интернете.

С вами был Виктор Геронда. До встречи на блоге!

Выпуск интегральной микросхемы начался с далекого 1978 года и продолжается по сегодняшний день. Микросхема дает возможность изготовить различные виды сигнализации и зарядные устройства для повседневного применения. Микросхема tl431 нашла широкое применение в бытовых приборах: мониторах, магнитофонах, планшетах. TL431 - это своего рода программируемый стабилизатор напряжения.

Схема включения и принцип работы

Принцип работы довольно прост. В стабилизаторе есть постоянная величина опорного напряжения , и если подаваемое напряжение меньше этого номинала, то транзистор будет закрыт и не допустит прохождение тока. Это отчетливо можно наблюдать на следующей схеме.

Если же эту величину превысить, регулируемый стабилитрон откроет P-N переход транзистора, и ток потечет дальше к диоду, от плюса к минусу. Выходное напряжение будет постоянным. Соответственно, если ток упадет ниже величины опорного напряжения, управляемый операционный усилитель закроется.

Цоколевка и технические параметры

Операционный усилитель выпускается в разных корпусах. Изначально это был корпус ТО-92, но со временем его сменил более новый вариант SOT-23. Ниже изображена распиновка и виды корпусов начиная с самого «древнего» и заканчивая обновлённой версией.

На рисунке можно наблюдать, что у tl431 цоколевка изменяется в зависимости от типа корпуса. У tl431 имеются отечественные аналоги КР142ЕН19А, КР142ЕН19А. Существуют и зарубежные аналоги tl431: KA431AZ, KIA431, LM431BCM, AS431, 3s1265r, которые ничем не уступают отечественному варианту.

Характеристика TL431

Этот операционный усилитель работает с напряжением от 2,5 до 36В. Ток работы усилителя колеблется от 1А до 100 мА, но есть один важный нюанс: если требуется стабильность в работе стабилизатора, то сила тока не должна опускаться ниже 5 мА на входе. У тл431 имеется величина опорного напряжения, которая определяется по 6-й букве в маркировке:

  • Если буквы нет, то точность равняется - 2%.
  • Буква А в маркировке свидетельствует о - 1% точности.
  • Буква В говорит о - 0,5% точности.

Более развернутая техническая характеристика изображена на рис.4

В описании tl431A можно увидеть, что величина тока довольна мала и составляет заявленные 100мА, а величина мощности, которую рассеивают эти корпуса, не превышает сотен милливатт. Этого мало. Если предстоит работать с более серьезными токами, то будет правильнее воспользоваться мощными транзисторами с улучшенными параметрами.

Проверка стабилизатора

Сразу возникает уместный вопрос о том, как проверить tl431 мультиметром . Как показывает практика, одним мультиметром проверить не получится. Для проверки tl431 мультиметром следует собрать схему. Для этого понадобятся: три резистора (один из них подстроечный), светодиод или лампочка, источник постоянного тока 5В.

Резистор R3 необходимо подобрать таким образом, чтобы он ограничил ток до 20мА в цепи питания. Его номинал составляет примерно 100Ом. Резисторы R2 и R3 выполняют роль балансира. Как только напряжение будет 2,5 В на управляющем электроде, то переход светодиода откроется, и напряжение пойдет через него. Эта схема хороша тем, что светодиод выполняет роль индикатора.

Источник постоянного тока - 5В является фиксированным, а управлять микросхемой tl431 можно с помощью переменного резистора R2. Когда питание на микросхему не подается, то диод не горит. После того как сопротивление изменяется при помощи подстроечного резистора, светодиод загорается. После этого мультиметр нужно включить в режим измерения постоянного тока и замерить напряжение на управляющем выводе, которое должно составлять 2,5. Если напряжение присутствует и светодиод горит, то элемент можно считать рабочим.

На базе операционного усилителя тока tl431 можно создать простой стабилизатор. Для создания нужной величины U этого понадобятся три резистора. Необходимо высчитать номинал запрограммированного напряжения стабилизатора. Расчет можно произвести при помощи формулы: Uвых=Vref(1 + R1/R2). Согласно формуле U на выходе зависит от величины R1 и R2. Чем больше сопротивление R1 и R2, тем ниже напряжение выходного каскада. Получив номинал R2, величину R1 можно высчитать следующим образом: R1=R2(Uвых/Vref – 1). Регулируемый стабилизатор возможно включить тремя способами.

Необходимо учесть немаловажный нюанс: сопротивление R3 можно рассчитать по той формуле, по которой рассчитывался номинал R2 и R2. В выходной каскад не стоит устанавливать полярный или неполярный электролит, во избежание помех на выходе.

ЗУ для мобильного телефона

Стабилизатор можно применить как своеобразный ограничитель тока. Это свойство будет полезным в устройствах для зарядки мобильного телефона.

Если напряжение в выходном каскаде не достигнет 4,2 В, происходит ограничение тока в цепях питания. После достижения заявленных 4,2 В стабилизатор уменьшает величину напряжения - следовательно, падает и величина тока. За ограничение величины тока в схеме отвечают элементы схемы VT1 VT2 и R1-R3. Сопротивление R1 шунтирует VT1. После превышения показателя в 0,6 В элемент VT1 открывается и постепенно ограничивает подачу напряжения на биполярный транзистор VT2.

На базе транзистора VT3 резко уменьшается величина тока. Происходит постепенное закрытие переходов. Напряжение падает, что приводит к падению силы тока. Как только U подходит к отметке 4,2 В, стабилизатор tl431 начинает уменьшать его величину в выходных каскадах устройства, и заряд прекращается. Для изготовления устройства необходимо использовать следующий набор элементов:

Необходимо обратить особое внимание на транзистор az431 . Для равномерного уменьшения напряжения в выходных каскадах желательно поставить транзистор именно az431, datasheet биполярного транзистора можно наблюдать в таблице.

Именно этот транзистор плавно уменьшает напряжение и силу тока. Вольт-амперные характеристики этого элемента хорошо подходят для решения поставленной задачи.

Операционный усилитель TL431 является многофункциональным элементом и дает возможность конструировать различные устройства: зарядные для мобильных телефонов, системы сигнализации и многое другое. Как показывает практика, операционный усилитель обладает хорошими характеристиками и не уступает зарубежным аналогам.