Как измерить режимы лампы? Испытание электронных ламп Подключение миллиамперметра в ламповом усилителе.

Ламповые усилители помимо приятных минут прослушивания любимой музыки доставляют любителям «теплого лампового звука» и немало хлопот. Малый ресурс радиоламп (особенно мощных) требует регулярной проверки режимов работы ламп, их корректировки и своевременной замены.

Как говорится, с годами лучше становится только вино...

Чтобы упростить поддержание вашего «любимца» в хорошей форме и регулярно не тыкать тестером во внутренности усилителя, Марк Драйдгер (Mark Driedger) предложил схему для контроля за током покоя выходных ламп.

Устройство позволяет:

1. контролировать ток покоя выходного каскада.
2. контролировать разбаланс плеч двухтактного каскада или разницу токов ламп при параллельном включении из-за неравномерного старения катодов ламп.

Идея.

Точная настройка уровня смещения в двухтактных выходных каскадах важна для получения максимальной неискаженной мощности и продления срока службы ламп . Большинство известных измерителей определяют абсолютный ток смещения каждой лампы (например, для измерения тока в 60 мА, используют схемы с диапазоном 0-100 мА). При относительной простоте и надёжности схемы эти методы не очень точны.

Предлагаемая схема измеряет ошибки тока смещения относительно сбалансированного состояния двухтактного каскада. Устройство компактное, недорогое, простое и точное, благодаря использованию двухуровневых компараторов.

Метод измерения.

Резисторы Rs малой величины (датчики тока) соединены последовательно с катодом ламп. Баланс каскада измеряется между точками А и В. Смещение измеряется путем усреднения напряжения А и В в точке С и сравнением результата с постоянным опорным напряжением VR. Опорное напряжение устанавливается в соответствии с током покоя выходных ламп: Vr=Io*Rs

Смещение двухтактных каскадов может быть задано балансировкой плеч:

или с помощью независимых регуляторов смещения для каждой лампы:

Так как автор предпочитает в своих конструкциях использовать первый вариант смещения, то в статье описывается применение измерителя именно для такого варианта включения. В конце будут даны рекомендации, как использовать измеритель в схеме с независимым смещением ламп.

Схема предназначена для усилителей с фиксированным смещением ламп выходного каскада. Катодное (автосмещение) как правило, не имеет цепей подстройки, а если и имеет, то номиналы их варьируются в широких пределах, что затрудняет согласование измерителя со схемой.

Резистор в катодной цепи вносит в схему небольшую отрицательную обратную связь, теоретически снижая усиление и искажения. На практике снижение коэффициента усиления минимальны при рекомендуемых значениях резисторов. Например, если мы вводим в катод лампы КТ-88 резистор 10 Ом при приведённом сопротивлении нагрузки 5кОм, то потеря усиления для нагрузки от 8 до 650 Ом составит всего 0,2дБ .

Если вас это беспокоит, то вы можете ввести в схему переключатель, который будет закорачивать этот резистор, когда измеритель не используется. Применение шунтирующего конденсатора здесь не очень удобно из-за малого сопротивления резистора. Кроме того, небольшие резисторы стоят в катодных цепях таких отлично звучащих аппаратов как Marantz 9, Heathkit W-7M, Luxman LX-33, Radford STA-25R, Harmon-Kardon Citation II . Каких-либо негативных последствий от введения этих резисторов замечено не было.

Схема:

Основой измерителя являются двухуровневые (оконные) компараторы LTC1042 от Linear Technology. Они имеют цифровые выходы и дифференциальные входы, напряжение на которых может изменяться в пределах от 0 до 5 В (напр. питания). Выходы компараторов через логические элементы управляют тремя светодиодами, которые указывают, что смещение (разбаланс плеч) выше, ниже или в пределах нормы. Чувствительность задается по входу компаратора “Width/2” . «ОК» загорается, когда разница напряжений между входами меньше, чем напряжение на “Width/2”. Резистор 100 кОм между выводом 7 и шиной питания устанавливает частоту внутреннего генератора для компаратора. (Он определяет выбор архитектуры компаратора для снижения энергопотребления.)

Так как в любой момент времени горит только один светодиод, то можно использовать один токоограничительный резистор на все светодиоды, а не на каждый отдельно:

На каждый канал используется две схемы компаратора:

Опорное напряжение формируется стабилизатором на TL431 (2,5В) и регулируется резисторами R4 – напряжение смещения и R6 – диапазон регулировки смещения.

От главного редактора РадиоГазеты: TL431 - трехвыводный стабилизатор. На схеме показан не совсем корректно. Чтобы напряжение стабилизации составило 2,5 В, надо управляющий вывод (на схеме даже не показан) соеденить с катодом.

Полная схема подключения к усилителю:

Увеличение по клику.

Диапазон регулировки составляет примерно от 40 до 80 мА (ток смещения на каждую лампу), с «окном» шириной 0 ± 8 мА. Значение R1 не является критическим, но для каждой пары ламп они должны быть согласованы (точно подобраны). Их величина должна быть меньше 10 кОм, но гораздо больше, чем сопротивление датчиков тока (Rs).

Значение резистора представляет собой компромисс между чувствительностью и перегрузочной способностью. Значение в 10 Ом подходит в большинстве случаев. Входы компаратора будут иметь уровень 0,6 V для типичного 60-мА тока смещения, который хорошо укладывается в диапазон компаратора от 0 до 5 В. Максимальный входной уровень компаратора составляет 5,3 В, что соответствует току смещения 530 мА, это значительно выше того, что бывает в нормальных условиях работы или при разумных перегрузках.

LTC1042 имеет точность порядка пары милливольт, что дает ошибку в несколько десятых долей миллиампер. Использование резисторов в 10 Ом позволяет легко вычислить опорное напряжение: опорное напряжение в мВ = ток смещения в мА х 10. Мощность, рассеиваемая на этих резисторах составляет около 0,125 W. Для обеспечения некоторого запаса стоит использовать резисторы мощностью 0,5W.

Конструкция.

Измеритель можно вмонтировать внутрь усилителя или использовать как внешнее устройство, подключая его при необходимости к точкам А и В схемы.

Двухканальный вариант был выполнен на макетной плате размерами примерно 5×6 см. Для питания необходим источник на 5 В . Во избежание повреждения ИС, необходимо подать питание после включения усилителя. Во время нормальной работы усилителя, светодиоды будут мигать в такт сигнала. SW1 позволяет их отключать, чтобы предотвратить проникновение взаимных шумов в аудиоцепи. Светодиоды устанавливают рядом с соответствующими регулирующими потенциометрами.

Настройка схемы заключается в установке резистором R15 напряжения, соответствующего току покоя ламп. Например, для тока покоя 60-мА на движке резистора должно быть 600мВ. Резистором R17 устанавливается диапазон отклонения тока покоя. Например, «окну» ± 4 мА соответствует напряжение 40 мВ на движке резистора R17.

После регулировок опорных напряжений они останутся стабильными и в ходе эксплуатации их не придётся проверять или корректировать. Только вовремя менять лампы 🙂

При регулировке усилителя, изменяя напряжение смещения выходного каскада добиваются зажигания среднего светодиода измерителя («ОК»).

Параллельное включение ламп или независимая регулировка смещения.

Многие усилители имеют независимые регуляторы смещения, как было показано на рисунке выше. Аналогично при параллельном включении ламп. Прибор может быть модифицирован для работы с независимыми регуляторами смещения:

Напряжение на каждом резисторе Rs является входным для компараторов и сравнивается с опорным. Установив по измерителю одинаковый ток покоя выходных ламп, мы по существу добьемся балансировки каскада.

Для параллельного включения ламп можно подключить компараторы к каждой лампе, используя общий источник опорного напряжения.

Статья подготовлена по материалам журнала «AudioXpress».

От главного редактора : весьма простая, компактная и полезная конструкция для счастливых обладателей ламповых усилителей. Кстати, этот измеритель можно встроить даже во всенароднолюбимый одноламповый усилитель Манакова (на 6Ф3П) в варианте с фиксированным смещением.

Подключив на вход измерителя вместо датчиков тока резистивный делитель, можно контролировать анодное напряжение усилителя.

Так как выходы компараторов логические, то ими можно управлять, к примеру, реле, отключая усилитель при перегрузках или нештатных ситуациях.

Удачного творчества!

Предварительное испытание имеет целью определить целость нити накала лампы и отсутствие коротких замыканий между ее электродами.
Такое испытание производится омметром или неоновой лампой НЛ (рис. 1). При этом нужно только наблюдать, проходит ли ток, если присоединить прибор к выводам нити накала на цоколе лампы, и отсутствует ли он, если подключать прибор к другим электродам. В большинстве приборов для статического испытания ламп предусмотрена возможность удобного и быстрого подобного предварительного испытания.



Рис. 1. Предварительные испытания ламп.
а - на обрыв нити; б - на короткое замыкание между электродами.

Статическое испытание ламп представляет собой определение всех параметров лампы, но оно требует довольно сложных аппаратов и производится только в лабораториях. В мастерских же для статического испытания ламп служат упрощенные приборы, называемые испытателями ламп или ламповыми тестерами.
Измерение эмиссии. Большинство испытателей позволяет определять эмиссию катода, т. е. катодный ток лампы при определенных постоянных напряжениях на ее электродах, которые указываются для различных типов ламп заводом-изготовителем в специальных таблицах, прилагаемых к испытателю: в устройство испытателя входят потенциометры и переключатели, позволяющие по этим таблицам воспроизвести необходимый режим испытания. Получающийся при этих условиях анодный ток считается критерием пригодности лампы.
Шкала указателя анодного тока часто не градуируется, а делится на два-три сектора с обозначениями: хорошая, пригодная и непригодная. При испытании ламп на испытателе со шкалой, отградуированной в процентах, хорошими считаются лампы, дающие не менее 70% нормального анодного тока; при 50-69% они считаются еще пригодными, а ниже 50% лампы бракуются вовсе. Определение эмиссии упрощенным способом может быть осуществлено и без помощи особого испытателя. Для этого достаточно иметь под рукой источника необходимых для испытания лампы напряжений и миллиамперметр (рис. 2 а).



Рис. 2
а - Упрощенный метод измерения эмиссии катода.
б - Измерение крутизны характеристики

Измерение крутизны характеристики. К электродам испытываемой лампы прикладываются постоянные напряжения, соответствующие её нормальному рабочему режиму, в том числе и напряжение сеточного смещения, должно соответствовать выбранной рабочей точке. Определив по миллиамперметру (рис. 2 б) анодный ток лампы, уменьшают сеточное смещение точно на 1 В и вновь отмечают анодный ток.
Прирост анодного тока в миллиамперах и определяет статическую крутизну характеристики в мА/В.

Испытание вакуума. Для испытания вакуума, лампа включается в схему, аналогичную схеме измерения эмиссии или крутизны характеристики, причем отрицательное напряжение на управляющей сетке должно соответствовать выбору нормальной рабочей точки. Заметив величину анодного тока, вводят в цепь управляющей сетки сопротивление в 1 МОм (рис. 3) и наблюдают за изменением анодного тока.

ГЕННАДИЙ СЕМЕНОВИЧ ГЕНДИН, «ВЫСОКОКАЧЕСТВЕННЫЕ ЛАМПОВЫЕ УСИЛИТЕЛИ ЗВУКОВОЙ ЧАСТОТЫ»

От правильности и грамотности монтажа зависят уровень интермодуляционных искажений и минимально достижимый уровень собственного фона и наводок, а следовательно, и реальный динамический диапазон всего усилителя, являющийся одним из важнейших его параметров.
Для того чтобы твердо уяснить общий для любых усилителей принцип грамотного монтажа, внимательно рассмотрим рисунки, иллюстрирующие соединение сеточной цепи лампы с входным разъемом, стоящим от лампы на некотором расстоянии.

Примеры неправильного монтажа

Еще раз подчеркнем, что принцип этот общий для соединения любых двух участков схемы, один из которых является источником сигнала, а другой - приемником. Это могут быть микрофон и лампа усилителя микрофонного каскада, входное гнездо магнитофона и коммутатор рода работ или, как в нашем случае, первые два каскада УЗЧ и блок регуляторов тембра.


Правильный монтаж


При этом особое внимание следует обратить на то, что источником сигнала в данном случае является анод лампы первого каскада, а приемником сигнала - сетка лампы второго каскада и, следовательно, никакие заземления внутри этого участка недопустимы. Иными словами, внутри наглухо заземленного металлического корпуса блока регуляторов тембра ни одна деталь не должна заземляться непосредственно на шасси или экранирующий кожух, а только на специальную хорошо изолированную от корпуса шину. Сказанное иллюстрируется рисунок.

Теперь о самих экранированных проводах. Ни один из промышленно выпускаемых типов проводов в «чистом» виде нам не подходит. Все экранированные провода придется делать самостоятельно. Делается это несложно. Если вы внимательно посмотрите на рисунок, то увидите, что внутри экранирующей оплетки помещены два провода: один обозначен тонкими линиями, другой - толстыми. Такое условное разделение соответствует фактическому. Действительно, все экранированные провода в нашем усилителе выполнены по принципу куклы-матрешки: внутри обычной металлической экранирующей оплетки помещены два провода разного диаметра - один тонкий (сигнальный) цветной многожильный в хлорвиниловой или фторопластовой изоляции сечением 0,2…0,35 мм, другой также многожильный, но сечением не менее 0,5 мм - нулевой, т.е. заземляемый. Оба эти провода вместе с экранирующей оплеткой помещены в изолирующий хлорвиниловый чулок.

Настоятельно рекомендуем взять за правило и присвоить различным цепям усилителя определенные цвета проводов. Выбор самих цветов может быть произвольным. Он, как правило, зависит от фактического ассортимента имеющихся проводов у радиолюбителя, но некоторых правил все же лучше придерживаться. Так, все нулевые провода, подлежащие заземлению, лучше делать черными и толстыми (сечением 0,5…0,75 мм), плюсовые провода выпрямителя - красными, а если выпрямителей несколько - то красными, розовыми и оранжевыми. Все сигнальные провода одного из стереоканалов - зелеными, а другого - синими (или голубыми). Цепи накала ламп - белыми или серыми. Для цепей вспомогательных устройств и систем можно выделить коричневые, желтые, сиреневые или тонкие черные. Такой порядок намного упростит процесс монтажа и исключит путаницу при распайке сдвоенных регуляторов громкости и тембра (какой из проводов от левого канала, какой - от правого).

Для самостоятельного изготовления экранированных соединительных кабелей нужно либо взять «чистую» металлическую оплетку, либо снять ее с промышленного одиночного экранированного провода, затем продеть в оплетку два изолированных провода (один тонкий - сигнальный, другой толстый - нулевой) и все это вместе с оплеткой протянуть внутрь хлорвинилового чулка соответствующего диаметра. Это можно делать двумя способами: изготавливать каждый отдельный конкретный провод заранее определенной длины или же сразу заготовить 10…15 м провода, а затем отрезать по мере необходимости куски нужной длины. Из практики можно сказать, что второй способ значительно экономит время.
Для монтажа накальных цепей и сетевых проводов внутрь одной оплетки помещают оба провода (можно одного цвета) и также изолируют оплетку хлорвиниловым чулком.

Теперь об упоминавшейся выше «нулевой» шине внутри экранированных блоков. Если в блоке размещается печатная плата с радиоэлементами, то роль шины может выполнять одна из печатных дорожек. Она должна быть как можно шире. Для уменьшения ее сопротивления дорожку надо залудить и напаять на нее сверху по всей длине отрезок голого медного, а еще лучше посеребренного провода. Если же монтаж внутри блока не печатный, а навесной (например, на коммутационном переключателе), то роль шины может выполнять такой же отрезок голого провода, закрепленный концами на «холостых» выводах переключателя или на специальных изоляционных опорных точках.

Учтите, что все сигнальные межкаскадные и входные цепи ламповых усилителей имеют входные и выходные сопротивления на порядок большие транзисторных и измеряются сотнями килоом и мегаомами. В связи с этим существенное влияние на частотную характеристику УЗЧ начинают оказывать собственные емкости экранированных проводов. Известно, что эта емкость прямо пропорциональна длине экранированного провода и обратно пропорциональна расстоянию от внутреннего провода (жилы) до оплетки. Поэтому не стремитесь использовать современные тонкие и сверхтонкие (диаметром 3, 2 и даже 1,5 мм) фирменные экранированные провода и по возможности делайте экранированные соединения покороче.

На практике тебе придется измерять постоянные токи в основном от нескольких долей миллиамперметра до 100 мА. Например, коллекторные токи транзисторов каскадов усиления радиочастоты и каскадов предварительного усиления звуковой частоты могут составлять примерно от 0,5 до 3-5 мА, а токи усилителей мощности достигать 60-80 мА. Значит, чтобы измерять сравнительно небольшие токи, нужен прибор на ток 1и не более 1 мА. А расширить пределы измеряемых токов можно путем применения шунта (см. рис. 109, а).

где Iи max - требуемое наибольшее значение измеряемого тока, мА. Если, например, Iи = 1 мА, Rн = 100 Ом, а необходимый ток Iи max = 100 мА, то Rш должно быть: Rш = 1 100(Iи max - Iи) = 1 100/(100-1) = 1 Ом.

Таким миллиамперметром можно измерять токи: без шунта - до 1 мА, с шунтом - до 100 мА. При измерении наибольшего тока (до 100 мА) через прибор будет течь ток, не превышающий 1 мА, т. е. его сотая часть, а 99 мА - через шунт. Лучше, однако, иметь еще один предел измерений - до 10 мА. Это для того, чтобы более точно, чем по шкале 100 мА, можно было отсчитывать токи в несколько миллиампер, например коллекторные токи транзисторов выходных каскадов простых усилителей. В этом случае измеритель токов можно построить по схеме, показанной на рис. 111, а. Здесь используется универсальный шунт; составленный из трех проволочных резисторов R1-R3, позволяющий увеличить пределы измерений миллиамперметра в 10 и 100 раз. И если ток Iи = 1 мА, то, применив к нему такой шунт, суммарное сопротивление которого должно быть значительно больше Rн, прибором можно будет измерять постоянные токи трех пределов: 0-1 мА, 0-10 мА и 0-100 мА. Зажим «- Общ.» - общий для всех пределов измерений. Чтобы узнать измеряемый ток, надо ток, зафиксированный стрелкой прибора, умножить на численное значение коэффициента возле соответствующего зажима. А поскольку ток Iи прибора известен, то возле зажимов вместо множителей « х 1», « х 10», « х 100» можно написать предельно измеряемые токи. Для нашего примера это могут быть надписи: «1 мА», «10 мА», «100 мА». Более подробно о расчете универсального шунта я расскажу еще в этой беседе.

Шунты изготовляют обычно из провода, обладающего высоким сопротивлением - манганина, никелина или константана, наматывая их на каркасы из изоляционных материалов. Каркасом шунта миллиамперметра может быть гетинаксовая планка длиной чуть больше расстояния между зажимами прибора (рис. 111,б). Выводами шунта и отводами его секций служат отрезки медного провода, укрепленные в отверстиях в планке. От них идут проводники к входным зажимам (или гнездам) прибора.

Очень важно обеспечить надежность контактов в самом шунте. Если в нем появятся плохое соединение или обрыв, то весь измеряемый ток пойдет через прибор, и он может испортиться.

И еще одно обязательное требование: в измеряемую цепь должен включаться шунт, к которому подключен миллиамперметр, а не наоборот. Иначе из-за нарушения контакта между зажимами прибора и шунтом через прибор также пойдет весь измеряемый ток и он может также выйти из строя.

Рис. 111. Миллиамперметр с универсальным шунтом

30.10.2010, 17:55

31.10.2010, 09:50

Сергей и Yoshimo может вы что нибудь подскажите? Про выставления тока покоя? Любая информация для меня будет полезна!

31.10.2010, 13:39

Здравствуйте всем! Кто может рассказать как самому выставить ток покоя в усиле ламповом, как правильно, сколько mA или mV ? Пробовал сам, не получается!

Все зависит от того, как организовано смещение выходного каскада (в котором эти лампы задействованы) усилителя.
При автосмещении ток покоя выставляется изменением номинала резистора, включенного между катодом лампы и землей, т.н. резистором автосмещения.
В случае фиксированного смещения ток покоя выставляют с помощью изменения напряжения смещения, которое подается на сетку лампы, а измеряют ток покоя косвенно, по падению напряжения на контрольном резисторе в цепи катода..
Величина оптимального тока покоя будет зависить от параметров выходного трансформатора, напряжения питания выходного каскада и схемы включения ламы (триодной, ультралинейной, пентодной). Пентодное включение в хай-фай усилителях применяется редко, его используют только в гитарных усилителях, потому в Вашем случае это будет либо триодное либо ультралинейное.

Если предположить, что производитель Вашего усилителя придержался рекомендаций производителей лампы по питанию и параметрам выходного трансформатора, то оптимальный ток покоя, соответствующий триодному включению EL34, работающей в классе А, будет 70мА, что соответствует смещению -16...-17В.

Еще раз хочу Вас предостеречь: не выставляйте сами ток покоя, если вы не имеете четкого представления о том, что именно Вы делаете. Все-таки, напряжение в усилителе жизненно опасное, да и сжечь усилитель и колонки - раз плюнуть.

04.11.2010, 19:58

Спасибо за совет! Сам не буду естественно, пробувал не получается! И странно на одной лампе показания с минусом mV , а на двух остальных с плюсом mV , в одном канале параллельные лампы, И В другом канале тоже самое, резистор кручу согласне этой лампе - минус не уходит, мне сказали что такого быть не может даже если лампа здохла! Еще хотел спросить можно в замен 6L6 УСТАНОВИТЬ EL 34. Я купил EL 34 RFT 61 года ХОЧУ Сравнить с 6L6 WGB GE 60 ГОДА. Кто говорит да, легко выставляй 500 mV , ВСЕ ОК!

04.11.2010, 21:45

Игорь, лампа EL34 несколько мощнее, чем 6L6, и, как следствие, более ресурсоемкая.
Перед установкой нужно убедиться минимум в трех вещах:
1. Силовой трансформатор сможет обеспечить ток 1,6А при напряжении не менее 5,9В для накала каждой лампы (для сравнения у 6L6 0,9А, т.е. почти вдвое ниже)
2. Силовой трансформатор сможет обеспечить ток 70мА анодного питания каждой лампы EL34 (для сравнения, у 6L6 45мА)
3. Выходные трансформаторы смогут "переварить" повышенный ток подмагничивания 70мА от каждой лампы.

При невыполнении любого из этих условий Вы рискуете остаться без усилителя.

Теперь другой момент: выходные трансформаторы усилителя были рассчитаны на работу с лампами 6L6. Характеристики ЕЛ34 отличаются от 6Л6, потому и трансформаторы для них также будут отличаться.
Если с питающей частью (три условия выше) все нормально, то трансфроматор, сконструированный для 6Л6 не даст до конца раскрыть потенциал ламп ЕЛ34. Это будет выражаться в незначительном снижении выходной мощности и незначительным увеличением КНИ (преимущественно третьей гармоники) по сравнению с оптимальным для ЕЛ34 выходным трансформатором.

Но, еще раз повторюсь: если блок питания потянет лампы, работать усилитель будет.

Что касается Ваших измерений: отрицательного тока покоя быть не может, т.к. электрон всегда будет двигаться от "-" к "+". Скорее всего Вы перепутали полярность щупов при подключении измерительного прибора. Для того, чтобы оценить проведенные Вами измерения, нужно знать величины сопротивлений, на которых Вы измеряли падение напряжение. Это даст возможность вычислить токи покоя.

08.11.2010, 18:14

Спасибо, Yoshimo ! Но у меня - только на одной лампе, и это и во втором канале, а две остальных параллельные с плюсом в каждом канале! У меня 3 лампы в канале параллельно работают! На счет трансов не знаю! Кстати комне приходил знающий человек в ламповых усилителях, тоже повозился и ничего не смог зделать с минусом и был очень удивлен! Сказал надо схему искать! И плотно разбираться! Как узнать потянет блок питания моего усилка лампы 34 ки? Кто говорит что все будет работать, никого не слушай! Я УЖЕ САМ НАЧИНАЮ БОЯТЬСЯ! Тестером все правильно делали обои, не перепутали полярность! Все в паспорте описано! И еще как то странно что резисторы как плавали то настраивались, то крутишь резистор подстроичник к каждой лампе напряжение не меняется, через время крутишь вроде выставляется ну на первой лампе минус не уходит, ни в левом ни в правом канале! Что может быть???

09.11.2010, 01:42

Игорь, лампа очень инерционная система (чем-то напоминает отопительный котел в частном доме, когда для достижения оптимальной температуры весь вечер нужно подкручивать кран газа к котлу), на то, чтобы ток, протекающий через нее установился, нужно время. Вращать подстроечник нужно очень медленно, каждый раз дожидаясь стабилизации тока. Т.е. немного повернули подстроечник - дождались пока ток сначала увеличившись (или уменьшившись) перестанет изменяться, далее опять повернули немного - дождались установления - и так до получения необходимого значения тока.

Установка тока покоя шести ламп - процесс очень длительный, запаситесь вагоном терпения.

Еще раз повторюсь - с точки зрения классической физики, отрицательное напряжение на катодном резисторе невозможно.

Определить возможности блока питания можно, наверное, только эмпирически (если только на питающем трансформаторе не подписаны номинальные токи вторичных обмоток), для этого нужно будет замерять напряжения накалов и напряжение питание с лампами 6Л6, затем приняв волевое решение, поставить ЕЛ34 и снова измерять напряжения накалов и напряжение питания. По просадке напряжений можно будет сделать выводы о способности блока питания "прокормить" ЕЛ34.
А еще лучше достать для начала схему усилителя.

09.11.2010, 19:01

Спасибо Yoshimo ! Все делал как вы написали!

09.11.2010, 19:19

Еще когда будете слушать систему с лампами ЕЛ34 - сразу обратите внимание на бас: если будут слышны ощутимые искажения, или количество баса значительно уменьшится - это будет признаком того, что выходные трансформаторы не в состоянии "переварить" увеличенный по сравнению с 6Л6 ток покоя ЕЛ34. Отчаиваться в таком случае не нужно, это лечится небольшой доработакой выходных трансформаторов.

28.02.2011, 14:59

Добрый день всем! Yoshimo разобрался я с током покоя, настроил человек один напряжение смещения все супер звучит теперь! Косяк был в том что в паспорте указано не правильное расположение клем, надписи перепутаны, порядок, реально все наоборот! Теперь минус не показывает все супер! Спасибо человеку, мастеру единственному кто разобраться смог!

28.02.2011, 15:36

Yoshimo разобрался я с током покоя
Это хорошо, т.к. настройка тока покоя очень важна для правильной работы усилителя.

Как изменился звук?

28.02.2011, 18:00

Стал легкий звук, более богатый тембрально,разрешение, четкий бас, микро и макро возросло на много! Яркость на верху ушла! Вобщем я рад, слушаю на серебре топовом silver audio !

04.03.2011, 23:00

Добрый вечер Yoshimo, а ток покоя влияет на высокие, от чего они бывают суховаты в ламповом усилителе, или какой режим лучше использовать, триод или ультралинейный, какой из них привлекательный или правильный?

05.03.2011, 11:46

При пониженном токе покоя, увеличиваются консонансные (четные) гармоники. При небольшом их значении до 1-2% это на слух воспринимается как "теплый звук" и как расширение сцены.
Дальнейшее уменьшение тока покоя ведет к тому, что при большом размахе выходного напряжения (при прослушивании на большой громкости) нагрузочная прямая входит в нелинейный участок характеристик лампы, это сопровождается резким увеличением четных гармоник, что на слух воспринимается как сухость а иногда и грязь в звуке.

Повышение тока покоя выше оптимального сначала снижает уровень четных гармоник, но после определенного значения они вырастают лавинообразно, притом не только четные, а и диссонансные нечетные гармоники. Это происходит вследствие увеличения тока подмагничивания выходного трансформатора.

Как на мой слух, при увеличении тока покоя улучшается макродинамика, размеры звуковых образов увеличиваются.
Уменьшение тока покоя снижает макродинамику, а на определенном этапе звук становится как будто, стеклянеющим.

Все написанное выше справедливо для однотактного усилителя
Двухтактные усилители практически избавлены от вышеперечисленных болезней. Единственное что, увеличенный ток покоя может сократить срок работы ламп или привести к быстрому отравлению анодов ламп.

Что касается ультралинейного и триодного режима.
Ультралинейный режим - это нелинейная обратная связь, зависящая от реализации конкретного трансформатора.
Говоря обобщенно - в ультралинейном режиме больше драйва и напора, чуть выше выходная можность в сравнении с триодным режимом. Такой режим хорошо подойдет для рок-музыки.
Триодный режим обладает более спокойным характером звучания, меньшими искажениями и меньшей выходой мощностью.

05.03.2011, 21:21

06.03.2011, 09:22

В ультралинейном режиме 390в на аноде кт88 двухтакт,какой ток покоя вы рекомендуете
100мА

06.03.2011, 15:47

Большое спасибо,в схеме 390в на аноде кт88,а когда я измерял там на аноде 360в если я его переключу в триодный без оос при 360в какой выставить ток покоя,за ранее благодарен вам Yoshimo .

06.03.2011, 17:49

Yoshimo я тут как то померял для интереса в усиле анодное напряжение 450v под нагрузкой (под лампой)и 500v без нагрузки, а посмотрел параметры моих ламп GE 6L6WGB у них plate voltage 400v max ! Но лампы вроде работают нормально! А до этого у меня стояли Sovtek 5881|6L6WGC с завода! И я начал разбираться и понял что Sovtek 5881|6L6WGC отличаются от 6L6WGB , напряжением, 6L6WGС, GC версии plate voltage 450,в триоде, 500 в пентоде! У меня усилок работает в пентоде, однотактник! У меня вопрос, что будет если такая ситуация как у меня в усиле 450 -500v , я использую лампы на plate voltage max 400v ? Я понял что мне можно ставить только лапмы 6L6GС, другие версии 6L6 , 6L6G,6L6GA не выдержат такого напряжения! И еще вот много раз видел что указывают в усилителях 6L6GС/5881 , типа что 6L6GС одно и тоже что и 5881 , это же не правда, в паспорте ламп, видно что совсем разные версии и параметры! Я ВОТ ТАК И КУПИЛ 5881 , в замен своих Sovtek 5881/6L6WGC , хорошо они военные 60 ГОДА, 10000 ресурс! Видимо держат напругу за этого!

07.03.2011, 19:19

измерял там на аноде 360в если я его переключу в триодный без оос при 360в какой выставить ток покоя

Если в щадящем режиме, то 90-100мА; если попытаться выжать максимум из лампы, можно 115мА, но это для КТ88 потолок. Если лампы современный саратовский или Тесловский новодел, можно спокойно ставить 110мА; если лампы винтажные и старые, то сильно загонять ток не стоит, лучше ограничиться 90-100мА, так для них будет безопаснее.

07.03.2011, 19:40

Yoshimo я тут как то померял для интереса в усиле анодное напряжение 450v под нагрузкой (под лампой)и 500v без нагрузки, а посмотрел параметры моих ламп GE 6L6WGB у них plate voltage 400v max ! Но лампы вроде работают нормально!

Ничего страшного, этот параметр можно превышать при условии, что мощность, рассеиваемая на аноде при таком напряжении не превышает максимальную, а на самих анодах нет покраснений или малиновых пятен от перегрева. Если такое наблюдается, нужно снизить ток покоя, чтобы аноды не калились.

А до этого у меня стояли Sovtek 5881|6L6WGC с завода! И я начал разбираться и понял что Sovtek 5881|6L6WGC отличаются от 6L6WGB , напряжением, 6L6WGС, GC версии plate voltage 450,в триоде, 500 в пентоде! У меня усилок работает в пентоде, однотактник! У меня вопрос, что будет если такая ситуация как у меня в усиле 450 -500v , я использую лампы на plate voltage max 400v ?

Ничего страшного, можно, но с учетом вышесказанного.

Я понял что мне можно ставить только лапмы 6L6GС, другие версии 6L6 , 6L6G,6L6GA не выдержат такого напряжения! И еще вот много раз видел что указывают в усилителях 6L6GС/5881 , типа что 6L6GС одно и тоже что и 5881 , это же не правда, в паспорте ламп, видно что совсем разные версии и параметры! Я ВОТ ТАК И КУПИЛ 5881 , в замен своих Sovtek 5881/6L6WGC , хорошо они военные 60 ГОДА, 10000 ресурс! Видимо держат напругу за этого!

Это действительно разные лампы, хотя и довольно близкие друг к другу по характеристикам. 5881 "крепче", чем 6L6, могут работать при бОльших токах покоя и в более экстремальных условиях.
Про 10000 часов наработки на отказ - это ни о чем не говорит, это как средняя температура по больнице. Этот параметр на 100% зависит от рабочих условий; я видел как гитаристы в самодельном Фендере каждые два-три месяца меняли комплект ламп, т.к. последние работали с большим превышением паспортных характеристик.