Схема индикации разряда аккумулятора. Li-ion и Li-polymer аккумуляторы в наших конструкциях

Из теории об аккумуляторных батареях мы помним, что литиевые аккумуляторы нельзя разряжать ниже уровня 3,2 Вольт на банку, иначе он теряет заложенную емкость и гораздо быстрее выходит из строя. Поэтому контроль минимального уровня напряжения очень важен для литиевых батарей. Конечно в мобильном телефоне или ноутбуке вариант критического разряда исключен умным контроллером, а вот аккумулятор для китайского фонарика можно убить очень быстро, а потом писать на форумах, какое гавно выпускают китайцы. Чтобы подобное не произошло предлагаю собрать одну из простых схем индикатора разряда литиевого аккумулятора.

В роли элемента индикации в данной схеме используется светодиод. В качестве компаратора используется прецизионный регулируемый стабилитрон TL431. Напомним TL 431 - регулируемый кремниевый стабилитрон с выходным напряжением, которое задается в любом значение от 2.5 до 36 вольт с использованием двух внешних резисторов. Порог срабатывания схемы задается делителем напряжения в цепи управляющего электрода. Для автомобильного аккумулятора надо подобрать другие значения резисторов.

Светодиоды лучше всего взять синие яркие, они наиболее заметны. Стабилитрон TL431 - используется во многих импульсных блоках питания в цепи управления оптроном защиты и его можно позаимствовать от туда.

Пока напряжение выше заданного уровня, в нашем примере 3,25 Вольта, стабилитрон работает в режиме пробоя, поэтому, транзистор заперт и весь ток протекает через зеленый светодиод. Как только напряжение на li ion батареи начинает снижаться в интервале от 3.25 до 3.00 вольт VT1 начинает отпираться и ток идет через оба светодиода.


При напряжение на аккумуляторе 3В или менее горит только красный индикатор. Серьезным минусом схемы является сложность подбора стабилитронов для получения нужного порога срабатывания, а также в высоком токовом потреблении от 1 мА.


Уровень срабатывания индикатора задается подбором номиналов резистора R2 и R3.

Благодаря использованию полевиков, ток потребления схемы очень мал.


Положительное напряжения, на затворе транзистора VT1 формируется с помощью делителя собранного на двух сопротивлениях R1-R2. Если его уровень выше напряжение отсечки полевика, он открывается и смажает затвор VT2 на общий провод, тем самым блокируя его.

В заданный момент, по мере разряда li ion батареи, напряжение, с делителя нехватает для открытия VT1 и он запирается. На затворе VT2 появляется потенциал, близкий к уровню питающего, следовательно Он открывается и загорается светодиод. Свечение которого говорит о необходимости подзаряда аккумулятора.

Индикатор разряда на микросхеме TL431

Порог срабатывания задается делителем на сопротивлениях R2-R3. При указанных на рисунке номиналах он равен 3.2 Вольта. При снижении этого порога на аккумуляторе, микросборка перестанет шунтировать светодиод и он загорится.


Если используется аккумулятор состоящий из нескольких последовательно включенных батарей, то схему выше придется подсоединить к каждой банке.

Для наладки схемы подключаем вместо аккумулятора регулируемый источник питания и подбором R2 (R4) добиваемся загорания индикатора в нужный интервал.

Индикатор, в роли которого используется с ветодиод начинает мигать, как только напряжения на батарее снизится ниже контролируемого уровня. Схема детектора базируется на специализированной микросборке MN13811, а схема реализована на основе биполярных транзисторов Q1 и Q2.

Если используется микросхема MN13811-M, то когда напряжение на батарее падает ниже 3.2В, светодиод начинает мигать. Огромным плюсом схемы является то, что во время мониторинга схема потребляет меньше 1 мкА, а в режиме мигания около 20 мА. В устройстве задействованы два биполярных транзистора разной проводимости. Интегральные микросхемы серии MN13811 имеются на разное напряжение, в зависимости от последней буквы, поэтому если требуется микросборка на другой порог срабатывания, то можно использовать эту же микросхему, но с другим буквенным индексом.


nik34 прислал:


Индикатор заряда на основе старой платы защиты от Li-Ion аккумулятора.

Легкое решение для индикации окончания заряда LiIon или LiPo аккумулятора от солнечной батареи можно сделать из... любой дохлой LiIon или LiPo батареи:)

В них используется шестиногий контроллер заряда на специальзированной микрухе DW01 (JW01, JW11, K091, G2J, G3J, S8261, NE57600 и пр. аналоги). Задачей этого контроллера является отключение батареи от нагрузки при полном разряде батареи и отключение аккумулятора от зарядки при достижении 4,25В.

Вот последний эффект и можно использовать. Для моих целей вполне подойдет светодиод, который будет загораться при окончании заряда.

Вот типовая схема включения этой микрухи и схема, в которую надо ее переделать. Вся переделка заключается в отпаивании мосфетов и подпайке светодиода.

Светодиод возьмите красный, у него напряжение зажигания меньше, чем у других цветов.

Теперь надо подключить эту схему после традиционного диода, который так же традиционно крадет от 0,2В (шоттки) до 0,6В от солнечной батареи, но зато он не дает аккумулятору разряжаться на солнечную панель после наступления темноты. Так вот, если подключить схему до диода, то получим индикацию недозаряда аккумулятора на 0,6В, что достаточно много.

Таким образом алгоритм работы будет следующий: наша СБ при освещении дает напругу на липольку и до тех пор, пока не сработает родной контроллер заряда на аккумуляторе при напряжении около 4,3В. Как только срабатывает отсечка и аккумулятор отключается, на диоде подскакивает напряжение выше 4,3В и наша схема в свою очередь пытается защитить свою батарею, которой уже нет и отдавая команду так же несуществующему мосфету зажигает светодиод.

Убрав со света СБ напряжение на ней упадет и светодиод отключится, прекратив кушать драгоценные миллиамперы. Это же решение можно использовать и с другими зарядниками, не обязательно зацикливаться на солнечной батарее:)
Оформить можно как угодно, благо платка контролера миниатюрна, не более 3-4 мм шириной, вот пример:



Наша волшебная микруха слева, два мосфета в одном корпусе справа, их надо убрать и запаять на плату в соответствии со схемой светодиод.

Вот и все, пользуйтесь, благо это просто.

Читатель Максим недавно прислал Li-ion аккумуляторы формата 18650, предупредив, что они не любят глубокого разряда, равно как и перезаряда (для меня, трансформаторно-сетевой души, такие вещи в новинку). Ладно, с зарядкой вопрос почти решен — Дядюшка Ляо пообещал выслать модули на TP4056. А уж с контролем низкого напряжения можно и самостоятельно разобраться, например, применив сдвоенный компаратор LM393 .


Немного теории . Литий-ионный аккумулятор 18650 называется так из-за размеров: диаметр 18 мм, длина 65 мм. Как и любой Li-ion, не имеет «эффекта памяти», не терпит полной разрядки (ниже 3 вольт лучше не разряжать) и при неправильной зарядке может взорваться. Есть модели со встроенной защитой, которая отключает батарею при глубоком разряде и по окончании зарядки, но моих это не касается.


Полностью заряженная батарея выдает 4,2 вольта. Соединив их последовательно, получаем 8,4 вольта, чего вполне хватает для работы «Спидолы 242» на свежем воздухе почти без помех и совсем без мультипликативного фона, и даже с подсветкой. Чтобы при хранении «крокодилы» случайно не замкнулись — закусываю их на ушную палочку или зубочистку. Из-под изоленты выглядывает металлическое ушко — точка соединения двух «банок».


Принцип работы . Измеряемое напряжение с делителя R1 , R2 поступает на инвертирующие входы компараторов In-1 , In-2 (оно в два раза меньше входного), а эталонное (3,3 вольта) — на прямые входы In+1 , In+2 .

Допустим, батарея полностью заряжена (8,4 вольта). Тогда на второй и шестой ногах микросхемы 4,2 вольта, что больше, чем 3,3. Красный светодиод VD2 не включен, светится зеленый VD3 . Напряжение в норме.


Батарея разрядилась до 7 вольт. Измеряемое напряжение — 3,5 вольта, все еще больше, чем 3,3, и все еще светится зеленый индикатор.


Батарея разрядилась до 6,4 вольта. Измеряемое напряжение — 3,2 вольта, что меньше, чем 3,3. Включается красный светодиод, а зеленый гаснет. Пора заряжать.

Путевые заметки:
— из экономии индикатор включается «по требованию» через тактовую кнопку;
— при длительной работе левая часть схемы (резисторы и стабилитрон) греется сильнее, чем хотелось бы;
— с помощью R3 можно немного менять пределы срабатывания компаратора: так, при 750 Омах это было 6 вольт ровно, а при подключении в параллель к ним 1,5 кОм (общее сопротивление 500 Ом) стало 6,4 вольта;
— подобрав стабилитрон VD1 и резистор R3 , можно следить за разрядом аккумуляторов на другое напряжение;


— если хочется посадить VD3 катодом на «землю» (например, в случае двухцветного светодиода), то надо подключить R5 и анод VD3 к седьмой ноге микросхемы, а In+2 и In-2 поменять местами;
— если индикация нормального напряжения не нужна, то все элементы и связи ко второму компаратору (ножки 5 -7) можно убрать.

Потрошить свою батарею и немедленно припаивать индикатор не стал — авось, не последняя, а вот изоленты жалко.



На будущее — в продаже есть модульные держатели, с помощью которых можно легко собрать воедино неограниченное количество аккумуляторов.

А вот проверенная схема всегда сгодится.

Дополнение от 15.09.16


Равно как и сгодится старый ноутбучный аккумулятор, которому можно дать второй шанс (пусть и с электроникой попроще, типа радиоприемника). Сдвоенные «банки» не стал разделять, поэтому их последовательное соединение вышло довольно длинным. Слева и справа — модули зарядки на TP4056.

» поступил комментарий с интересными предложениями по доработке конструкции.

Так как индикатор разряда батареи (п.3 комментария) целесообразно применять на любом автономном электронном устройстве, для исключения неожиданных сбоев или отказа аппаратуры в самый неподходящий момент при разряде батареи, то изготовление индикатора разряда вынесено отдельной статьей.

Применение индикатора разряда особенно важно для большинства литиевых аккумуляторов с номинальным напряжением 3.7 вольта (например, популярные сегодня 18650 и им аналогичные или распространенные плоские Li-ion аккумуляторы от заменяемых на смартфоны телефонов), т.к. они очень «не любят» разряд ниже 3,0 вольт и выходят при этом из строя. Правда, в большинство из них должны быть встроены схемы аварийной защиты от глубокого разряда, но кто знает какой аккумулятор в ваших руках, пока вы его не вскроете (Китай полон загадок).

Но главное, хотелось бы заранее узнать, какой заряд в настоящее время имеется в используемом аккумуляторе. Тогда мы могли бы вовремя подключить зарядку или поставить новый аккумулятор, не дожидаясь грустных последствий. Поэтому нам нужен индикатор, который заранее подаст сигнал о том, что аккумулятор скоро сядет окончательно. Для реализации этой задачи существуют различные схемотехнические решения - от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

В нашем случае, предлагается изготовить простой индикатор разряда литиевых аккумуляторов, который с легкостью собирается своими руками . Индикатор разряда отличается экономичностью и надежностью, компактностью и точностью определения контролируемого напряжения.

Схема индикатора разряда


Схема выполнена с применением, так называемых детекторов напряжения. Их еще называют мониторами напряжения. Это специализированные микросхемы, разработанные специально для контроля напряжения. Неоспоримые достоинства схем на мониторах напряжения - чрезвычайно низкое энергопотребление в дежурном режиме, а также ее крайняя простота и точность. Чтобы сделать индикацию разряда еще более заметной и экономичной, выход детектора напряжения нагружаем на мигающий светодиод или "мигалку" на двух биполярных транзисторах.

Применяемый в схеме детектор напряжения (DA1) PS Т529Н соединяет выход (вывод 3) микросхемы с общим проводом, при снижении контролируемого напряжения на батарее до 3,1 вольта, включая этим питание на генератор импульсов высокой скважности. При этом сверхяркий светодиод начинает вспыхивать с периодом: пауза - 15 сек., короткая вспышка - 1 сек. Это позволяет снизить потребляемый ток до 0,15 ma в паузе, и 4,8 ma при вспышке. При напряжении на аккумуляторе более 3,1 вольта, схема индикатора практически отключается и потребляет всего 3 мкa.

Как показала практика, указанного цикла индикации вполне достаточно, чтобы увидеть сигнал. Но при желании можно установить более удобный для вас режим подбором резистора R2 или конденсатора С1. В связи с малым током потребления устройства, отдельный выключатель напряжения питания для индикатора не предусмотрен. Устройство работоспособно при снижении питающего напряжения до 2,8 вольта.

Изготовление зарядного устройства

1. Комплектация.
Приобретаем или подбираем из имеющихся в наличии, комплектующие для сборки в соответствии со схемой.

2. Сборка схемы.
Для проверки работоспособности схемы и ее настройки, собираем индикатор разряда на универсальной монтажной плате. Для удобства наблюдения (большая частота импульсов), на время проверки, заменяем конденсатор С1 на конденсатор меньшей емкости (например 0,47 мкф). Подключаем схему к блоку питания с возможностью плавной регулировки постоянного напряжения в пределах от 2 до 6 вольт.

3. Проверка схемы.
Медленно понижаем напряжение питания индикатора разряда, начиная с 6 вольт. Наблюдаем на дисплее тестера величину напряжения, при которой включится детектор напряжения (DA1) и начнет мигать светодиод. При правильном подборе детектора напряжения, момент переключения должен состояться в районе 3,1 вольта.


4. Готовим плату для монтажа и пайки деталей .
Вырезаем необходимый для монтажа кусочек из универсальной печатной платы, аккуратно обрабатываем края платы напильником, очищаем и лудим контактные дорожки. Размер вырезаемой платы зависит от применяемых деталей и их компоновки при монтаже. Размеры платы на фото 22 х 25 мм.

5. Монтаж отлаженной схемы на рабочую плату
При положительном результате в работе схемы на монтажной плате, переносим детали на рабочую плату, паяем детали, выполняем недостающую разводку соединений тонким монтажным проводом. По окончании сборки проверяем монтаж. Схема может быть собрана любым удобным способом, в том числе и навесным монтажом.


6. Проверка рабочей схемы индикатора разряда
Проверяем работоспособность схемы индикатора разряда и ее настройки, подключив схему к блоку питания, а затем к тестируемому аккумулятору. При напряжении в цепи питания менее 3,1 вольта, индикатор разряда должен включиться.



Вместо применяемого в схеме детектора напряжения (DA1) PS Т529Н на контролируемое напряжение 3,1 вольта, возможно применить аналогичные микросхемы других производителей, например BD4731. Этот детектор имеет открытый коллектор на выходе (о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы), а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

В схеме также возможно применить детекторы на напряжение 3.08 вольта - TS809CXD, TCM809TENB713, МСР103Т-315Е/ТТ, САТ809ТТВI-G. Точные параметры выбираемых детекторов напряжения желательно уточнить в их datasheet.

Аналогичным образом можно применить и другой детектор напряжения на любое другое необходимое для работы индикатора напряжение.

Решение по второй части вопроса в п.3 приведенного комментария – работы индикатора разряда только при наличии освещенности, отложено по следующим причинам :
- работа дополнительных элементов в схеме, требует дополнительных затрат энергии от аккумулятора, т.е. страдает экономичность схемы;
- работа индикатора разряда днем, чаще всего, бесполезна, т.к. в комнате нет «зрителей», а к вечеру заряд батареи может и закончиться;
- работа индикатора в темное время суток ярче и эффективнее, а для быстрого отключения устройства имеется выключатель питания.

Применение, предложенного по п.2 комментария, отечественного операционного усилителя не рассматривал, по причине отладки режимов работы схемы по минимальным токам, в процессе доводки на монтажной плате.

Для решения задачи по п. 1 комментария, несколько изменил схему устройства «Ночник с акустическим включателем». Для чего включил положительную шину питания акустического реле через инвертор на VT3, с управлением от постоянно работающего фотореле.



TL431 — трехногая микросхема, которую часто называют «управляемым стабилитроном», ведь с ее помощью можно получать любое напряжение в диапазоне 2,5…36 вольт. Кроме того, ее можно использовать как компаратор на напряжение 2,5 вольта:

— если на входе меньше, чем 2,5 вольта — ток через выходной транзистор микросхемы не идет;
— если на входе больше, чем 2,5 вольта — транзистор открыт, и ток идет через него.



Очень похоже на транзистор в ключевом режиме, не? И даже нагрузку — те же индикаторные светодиоды — можно включать точно так же, как в транзисторный ключ.


Готовая схема на 7 вольт (для двух последовательно соединенных Li-ion батарей, где 8,4 вольта при полном заряде); для повышения точности R2 можно сделать из постоянного на 47k и подстроечного на 10k . Вывод 1, проводя аналогию с n-p-n транзистором — «база», вывод 2 — «эмиттер», вывод 3 — «коллектор» (условно, конечно, стабилитрон — не транзистор). Пока на «базе» напряжение выше, чем 2,5 вольта — микросхема открыта, и ток идет через нее. По мере разряда батареи напряжение снижается, и как только с делителя пойдет меньше, чем 2,5 вольта — транзистор микросхемы закроется, и ток пойдет через светодиод.

При желании можно собрать эту же схему на резисторах 10k и 5k6 — она будет работать, но станет чуть более прожорливой. Так что для экономии лучше взять резисторы побольше номиналом. Повторюсь: индикатор разряда батареи не должен сильно ее разряжать .

R3 задает ток через светодиод-нагрузку и выходной транзистор микросхемы. Подбирается хотя бы и по желаемой яркости свечения.


Красным светодиодам для включения надо маленькое напряжение (начиная с 1,5 В), так что они могут светиться даже тогда, когда TL431 , по идее, открыта и шунтирует их. Решение — последовательно поставить второй светодиод или диод 1N4007. Или использовать светодиоды с более высоким напряжением включения — зеленые, синие, белые.