Теорема ферма и била тезис. Кому поля не жмут

В прошлом двадцатом веке случилось событие, равного по масштабу которого в математике не было за всю ее историю. 19-го сентября 1994 года была доказана теорема, сформулированная Пьером де Ферма (1601-1665) более 350-ти лет назад в 1637 году. Она известна также как «последняя теорема Ферма» или как «большая теорема Ферма», поскольку есть еще так называемая "малая теорема Ферма". Ее доказал 41-летний, до этого момента в математическом сообществе ничем особо непримечательный, и по математическим меркам уже немолодой, профессор Принстонского университета Эндрю Уайлс.

Удивительно, что про это событие толком не знают не только наши обычные российские обыватели, но и многие интересующиеся наукой люди, включая даже немалое число ученых в России, так или иначе использующих математику. Это показывают не прекращающиеся «сенсационные» сообщения об «элементарных доказательствах» теоремы Ферма в российских популярных газетах и по телевидению. Очередные доказательства освещались с такой информационной силой, как будто не существовало прошедшее самую авторитетную экспертизу и получившее широчайшую известность во всем мире доказательство Уайлса. Реакция российского математического сообщества на эти первополосные новости в ситуации давно полученного строгого доказательства оказалась поразительно вялой. Наша цель состоит в том, чтобы дать набросок захватывающей и драматичной истории доказательства Уайлса в контексте феерической истории самой великой теоремы Ферма и немного поговорить о самом ее доказательстве. Здесь нам прежде всего интересен вопрос о возможности доступного изложения доказательства Уайлса, про которое, конечно, большинство математиков в мире знает, но говорить про понимание этого доказательства могут лишь очень и очень немногие из них.

Итак, вспомним знаменитую теорему Ферма. Большинство из нас так или иначе слышали о ней еще со школьной поры. Эта теорема связана с весьма знаменательным уравнением. Это, пожалуй, самое простое осмысленное уравнение, какое только можно написать, используя три неизвестных и еще один строго положительный целочисленный параметр . Вот оно:

Великая теорема Ферма утверждает, что при значениях параметра (степени уравнения), превышающих двойку, целочисленных решений данного уравнения не существует (кроме, конечно, решения, когда все эти переменные равны нулю одновременно).

Притягательная сила этой теоремы Ферма для широкой публики очевидна: нет другого математического утверждения, обладающего такой простотой формулировки, кажущейся доступностью доказательства, а также привлекательностью его «статусности» в глазах общества.

До Уайлса дополнительным стимулом для ферматистов (так назвали людей, маниакально атаковавших проблему Ферма) являлся учрежденный почти сто лет назад приз немца Вольфскеля за доказательство, правда небольшой по сравнению с Нобелевской премией - он успел обесцениться во время первой мировой войны.

Кроме того, всегда привлекала вероятная элементарность доказательства, так как сам Ферма «ее доказал», написав на полях перевода «Арифметики» Диофанта: «Я нашел этому поистине чудесное доказательство, но поля здесь слишком узки, чтобы вместить его».

Вот почему здесь уместно привести оценку актуальности популяризации доказательства Уайлса проблемы Ферма, принадлежащую известному американскому математику Рему Мерти (R. Murty) (цитируем по выходящему скоро переводу книги Ю. Манина и А. Панчишкина «Введение в современную теорию чисел»):

«Большая теорема Ферма занимает особое место в истории цивилизации. Своей внешней простотой она всегда притягивала к себе как любителей, так и профессионалов… Все выглядит так, как если бы было задумано неким высшим разумом, который в течение веков развивал различные направления мысли лишь затем, чтобы потом воссоединить их в один захватывающий сплав для решения Большой теоремы Ферма. Ни один человек не может претендовать на то, чтобы быть экспертом во всех идеях, использованных в этом «чудесном» доказательстве. В эпоху всеобщей специализации, когда каждый из нас знает «все больше и больше о все меньшем и меньшем», совершенно необходимо иметь обзор этого шедевра…»


Начнем с краткого исторического экскурса, в основном навеянного увлекательной книгой Саймона Сингха «Великая теорема Ферма». Вокруг манящей своей кажущейся простотой коварной теоремы всегда кипели нешуточные страсти. История ее доказательства – сплошные драмы, мистика и даже непосредственные жертвы. Пожалуй, самая знаковая жертва – Ютака Танияма (1927-1958). Именно этот молодой талантливый японский математик, отличавшийся в жизни большой экстравагантностью, создал в 1955 году основу для атаки Уайлса. На основе его идей Горо Шимура и Андре Вейль несколькими годами позже (60-67 годы) окончательно сформулировали знаменитую гипотезу, доказав значительную часть которой, Уайлс получил теорему Ферма как следствие. Мистика истории смерти нетривиального Ютаки связана с его бурным темпераментом: он повесился в возрасте тридцати одного года на почве несчастной любви.

Вся длинная история загадочной теоремы сопровождалась постоянными объявлениями о ее доказательстве, начиная с самого Ферма. Постоянно находящиеся ошибки в нескончаемом потоке доказательств постигали не только математиков-любителей, но и математиков-профессионалов. Это привело к тому, что термин «ферматист», применяемый к доказывающим теорему Ферма, стал нарицательным. Постоянно сохраняющаяся интрига с ее доказательством приводила иной раз к забавным казусам. Так, когда в первом варианте уже широко разрекламированного доказательства Уайлса обнаружился пробел, на одной из станций нью-йоркского метро появилась ехидная надпись: «я нашел поистине чудесное доказательство Великой теоремы Ферма, но пришел мой поезд и я не успеваю его записать».

Эндрю Уайлс (Andrew Wiles), родился в Англии в 1953 году, учился на математическом факультете в Кембридже; в аспирантуре был у профессора Джона Коутса. Под его руководством Эндрю постигал теорию японского математика Ивасавы, находящуюся на границе классической теории чисел и современной алгебраической геометрии. Такой сплав с виду далеких друг от друга математических дисциплин получил название арифметической алгебраической геометрии. Эндрю бросил вызов проблеме Ферма, опираясь именно на эту сложную даже для многих профессиональных математиков синтетическую теорию,.

После окончания аспирантуры Уайлс получил позицию в Принстонском университете, где работает и сейчас. Он женат и имеет троих дочерей, двое из которых родились «в семилетнем процессе первого варианта доказательства». В эти годы только Нада, жена Эндрю, знала о том, что он штурмует в одиночку самую неприступную и самую знаменитую вершину математики. Именно им, Наде, Клэр, Кэйт и Оливии посвящена знаменитая финальная статья Уайлса «Модулярные эллиптические кривые и Последняя теорема Ферма» в центральном математическом журнале «Annals of Mathematics», где публикуются наиболее важные математические работы.

Сами же события вокруг доказательства разворачивались довольно драматично. Этот захватывающий сценарий можно было бы назвать «ферматист – математик-профессионал».

Действительно, Эндрю мечтал доказать теорему Ферма уже с юношеских лет. Но ему, в отличие от подавляющего большинства ферматистов, было ясно, что для этого нужно осваивать целые пласты самой сложной математики. Двигаясь к своей цели, Эндрю заканчивает математический факультет знаменитого Кембриджского университета и начинает специализироваться в современной теории чисел, находящейся на стыке с алгебраической геометрией.

Идея штурма сияющей вершины достаточно проста и фундаментальна - максимально хорошая аммуниция и тщательная разработка маршрута.

В качестве мощного инструмента достижения цели выбирается развиваемая самим же Уайлсом уже знакомая ему теория Ивасавы, имеющая глубокие исторические корни. Эта теория обобщала теорию Куммера – исторически первую серъезную математическую теорию по штурму проблемы Ферма, появившуюся еще в 19-м веке. В свою очередь, корни теории Куммера лежат в знаменитой теории легендарного и гениального романтика-революционера Эвариста Галуа, погибшего в возрасте двадцати одного года на дуэли в защиту чести девушки (обратите внимание, вспомнив историю с Таниямой, на роковую роль прекрасных дам в истории математики).

Уайлс полностью погружается в доказательство, прекращая даже участие в научных конференциях. И в результате семилетнего отшельничества от математического сообщества в Принстоне, в мае 1993 года Эндрю ставит точку в своем тексте - дело сделано.

Именно в это время подворачивается прекрасный повод оповестить научный мир о своем открытии – уже в июне должна была состояться конференция в родном Кембридже именно по нужной тематике. Три лекции в Кембриджском институте Исаака Ньютона будоражат не только математический мир, но и широкую общественность. В конце третьей лекции, 23-го июня 1993-го года, Уайлс объявляет о доказательстве великой теоремы Ферма. Доказательство насыщено целым букетом новых идей, таких как новый подход к гипотезе Таниямы-Шимуры-Вейля, далеко продвинутая теория Ивасавы, новая «теория контроля деформаций» представлений Галуа. Математическое сообщество с огромным нетерпением ждет проверки текста доказательства экспертами по арифметической алгебраической геометрии.

Вот здесь-то и наступает тот самый драматический поворот. Сам Уайлс в процессе общения с рецензентами обнаруживает у себя пробел в доказательстве. Трещину дал изобретенный им же самим механизм «контроля деформаций» - несущая конструкция доказательства.

Пробел обнаруживается пару месяцев спустя в результате «построчечного» объяснения Уайлсом своего доказательства коллеге по кафедре в Принстоне Нику Кацу. Ник Кац, находясь уже давно в дружеских отношениях с Эндрю, рекомендует ему сотрудничество с молодым перспективным английским математиком Ричардом Тейлором.

Проходит еще один год напряженной работы, связанный с изучением дополнительного орудия атаки на неподдающуюся проблему - так называемых эйлеровских систем, независимо открытых в 80-е годы нашим соотечественником Виктором Колывагиным (уже давно работающим в университете Нью-Йорка) и Тэйном.

И вот новое испытание. Не доведенный до конца, но все же очень впечатляющий результат работы Уайлса, докладывается им международном конгрессе математиков в Цюрихе в конце августа 1994 года. Уайлс борется изо всех сил. Буквально перед докладом, по словам очевидцев, он еще что-то лихорадочно пишет, пытаясь максимальной улучшить ситуацию с «провисшим» доказательством.

После этого интригующего аудиторию крупнейших математиков мира доклада Уайлса математическое сообщество «радостно выдыхает» и сочувственно аплодирует: ничего, парень, с кем ни бывает, но ведь зато продвинул науку, показав, что и в решении такой неприступной гипотезы можно успешно продвигаться, чего ранее никто даже не помышлял делать. Очередной ферматист Эндрю Уайлс не смог отнять сокровенную мечту многих математиков о доказательстве теоремы Ферма.

Естественно представить состояние Уайлса в то время. Даже поддержка и доброжелательное отношение коллег по цеху не могли компенсировать его состояние психологического опустошения.

И вот, всего через месяц, когда, как пишет Уайлс во введении к своей итоговой статье в «Annals» с окончательным доказательством, «я решил бросить последний взляд на эйлеровы системы в попытке реанимировать этот аргумент для доказательства», это случилось. Вспышка озарения настигла Уайлса 19-го сентября 1994 г. Именно в этот день пробел в доказательстве удалось закрыть.

Далее дела пошли в стремительном темпе. Уже налаженное сотрудничество с Ричардом Тейлором при изучении эйлеровых систем Колывагина и Тэйна позволило окончательно оформить доказательство в виде двух больших статей уже в октябре.

Их публикация, занявшая на весь номер «Annals of Mathematics», последовала уже в ноябре 1994. Все это вызвало новый мощный информационный всплеск. История доказательства Уайлса получила в США восторженную прессу, был снят фильм и выпущены книги об авторе фантастического прорыва в математике. В одной из оценок своего собственного труда Уайлс отметил, что он изобрел математику будущего.

(Интересно, так ли это? Заметим лишь, что со всем этим информационным шквалом резко контрастировал практически нулевой информационный резонанс в России, продолжающийся до сих пор).

Зададимся вопросом – какова «внутренняя кухня» получения выдающихся результатов? Ведь интересно знать, как ученый организует свою работу, на что в ней ориентируется, как определяет приоритеты своей деятельности. Что можно сказать в этом смысле про Эндрю Уайлса? И неожиданно оказывается, что в современную эпоху активных научных коммуникаций и коллективного стиля работы у Уайлса был свой взгляд на стиль работы над суперпроблемами.

Уайлс шел к своему фантастическому результату на основе интенсивной непрерывной многолетней индивидуальной работы. Организация его деятельности, говоря казенным языком, носила экстремально внеплановый характер. Это категорически нельзя было назвать деятельностью в рамках определенного гранта, по которой необходимо регулярно отчитываться и опять всякий раз планировать получение определенных результатов к определенному сроку.

Такая деятельность вне общества, не использующая непосредственное научное общение с коллегами даже на конференциях, казалась противоречащей всем канонам работы современного ученого.

Но именно индивидуальная работа, позволяла выходить за рамки уже сложившихся стандартных понятий и методов. Такой стиль работы, замкнутый по форме и одновременно свободный по сути, позволял изобретать новые мощные методы иполучать результаты нового уровня.

Стоявшая перед Уайлсом проблема (гипотеза Таниямы-Шимуры-Вейля) не находилась в те годы в числе даже ближайших вершин, которые могут быть покорены современной математикой. При этом никто из специалистов не отрицал ее огромного значения, и номинально она была в «мэйнстриме» современной математики.

Таким образом, деятельность Уайлса носила ярко выраженный внесистемный характер и результат был достигнут благодаря сильнейшей мотивации, таланту, творческой свободе, воле, более чем благоприятным материальным условиям для работы в Принстоне и, что крайне важно, взаимопониманию в семье.

Доказательство Уайлса, появившееся как гром среди ясного неба, стало своеобразным тестом для международного математического сообщества. Реакция даже самой прогрессивной части этого сообщества в целом оказалась, как ни странно, довольно нейтральной. После того как улеглись эмоции и восторги первого времени после появления знакового доказательства все спокойно продолжили свои дела. Специалисты по арифметической алгебраической геометрии потихоньку изучали «могучее доказательство» в своем узком кругу, остальные же бороздили свои математические тропы, расходясь, как и ранее, все дальше друг от друга.

Попробуем понять эту ситуацию, у которой есть как объективные, так и субъективные причины. Объективные факторы невосприятия, как ни странно, имеют корни в организационной структуре современной научной деятельности. Эта деятельность подобна катку, спускающемуся по наклонной вниз дороге и обладающему колоссальной инерцией: своя школа, свои сложившиеся приоритеты, свои источники финансирования, и.т.д. Все это хорошо с точки зрения налаженной системы отчетности перед грантодателем, но мешает поднять голову и оглядеться по сторонам: а что собственно действительно является важным и актуальным для науки и общества, а не для очередной порции гранта?

Потом - опять же - не хочется вылезать из своей уютной норки, где все так знакомо, и залезать в другую, совсем незнакомую нору. Неизвестно, чего там ждать. Тем более, заведомо ясно - за вторжение денег там не дают.

Вполне естественно, что ни одна из бюрократических структур, организующих науку в разных странах, включая и Россию, так и не сделала выводов не только из феномена доказательства Эндрю Уайлса, но и похожего феномена нашумевшего доказательства Григория Перельмана другой, тоже знаменитой математической проблемы.

Субъективные факторы нейтральности реакции математического мира на «событие тысячелетия» лежат во вполне прозаичных причинах. Доказательство действительно необычайно сложное и длинное. Для неспециалиста в арифметической алгебраической геометрии оно кажется состоящим из наслоения терминологии и конструкций наиболее абстрактных математических дисциплин. Кажется, что автор и вовсе не ставил цель, чтобы его поняли как можно большее число интересующихся математиков.

Эта методологическая сложность, к сожалению, присутствует как неизбежная издержка великих доказательств последнего времени (например, разбор недавнего доказательства Григория Перельмана гипотезы Пуанкаре продолжается по сей день).

Сложность восприятия усиливается еще и тем, что арифметическая алгебраическая геометрия - весьма экзотическая подобласть математики, вызывающая трудности даже у профессиональных математиков. Дело усугублялось также и необычайной синтетичностью доказательства Уайлса, использовавшего разнообразные современные инструменты, созданные большим числом математиков в самые последние годы.

Но надо учесть, что перед Уайлсом и не стояла методическая задача объяснения – он конструировал новый метод. В методе работал именно синтез собственных гениальных идей Уайлса и конгломерата новейших результатов из различных математических направлений. И именно такая мощная конструкция протаранила неприступную проблему. Доказательство не стало случайностью. Факт его кристаллизации полностью соответствовал как логике развития науки, так и логике познания. Задача разъяснения такого супердоказательства представляется абсолютно самостоятельной, весьма непростой, хотя и очень перспективной проблемой.

Можете сами прощупать общественное мнение. Попробуйте задать вопросы знакомым математикам по поводу доказательства Уайлса: кто понял? Кто понял хотя бы основные идеи? Кто захотел понять? Кто почувствовал, что это новая математика? Ответы на эти вопросы представляются риторическими. И вряд ли вы встретите много желающих прорвать частокол специальных терминов и освоить новые понятия и методы для того, чтобы решить всего одно весьма экзотическое уравнение. И почему ради именно этой задачи надо все это изучать?!

Приведу такой забавный пример. Пару лет назад знаменитый французский математик, филдсовский лауреат, Пьер Делинь, крупнейший специалист в алгебраической геометрии и теории чисел, на вопрос автора о смысле одного из ключевых объектов доказательства Уайлса – так называемого «кольца деформаций» - после получасового раздумья сказал, что не до конца понимает смысл этого объекта. С момента доказательства к этому моменту прошло уже десять лет.

Теперь можно воспроизвести реакцию российских математиков. Основная реакция – ее практически полное отсутствие. В основном это вызвано «тяжелой» и «непривычной» математикой Уайлса.

Например, в классической теории чисел вы не встретите таких длинных доказательств как у Уайлса. Как выражаются специалисты по теории чисел, «доказательство должно быть на страничку» (доказательство Уайлса в сотрудничестве с Тейлором в журнальном варианте занимает 120 страниц).

Также нельзя исключать фактора опасения за непрофессионализм своей оценки: реагируя, берешь на себя ответственность за оценки доказательства. А как это делать, когда не знаешь этой математики?

Характерной является позиция занятая непосредственными специалистами по теории чисел: «… и трепет, и жгучий интерес, и осторожность перед лицом одной из величайших загадок в истории математики» (из предисловия к книге Пауло Рибенбойма «Последняя теорема Ферма для любителей» - единственному доступному на сегодняшний день источнику непосредственно по доказательству Уайлса для широкого читателя.

Реакция одного из самых известных современных российских математиков академика В.И. Арнольда на доказательство «активно скептична»: это не настоящая математика – настоящая математика геометрична и сильна связями с физикой. Более того, сама проблема Ферма по своей природе не может генерировать развитие математики, поскольку она «бинарна», то есть, формулировка проблемы требует дать ответ только на вопрос «да или нет». Вместе с тем, математические работы последних лет самого В.И. Арнольда во многом оказались посвящены вариациям на очень близкую теоретико-числовую тематику. Возможно, что Уайлс парадоксальным образом стал косвенной причиной этой активности.

На мехмате МГУ, все-таки, появляются энтузиасты доказательства. Замечательный математик и ученый-популяризатор Ю.П. Соловьев (безвременно ушедший от нас) инициирует перевод книги Э.Кнэппа по эллиптическим кривым с необходимым материалом по гипотезе Таниямы–Шимуры-Вейля. Алексей Панчишкин, работащий ныне во Франции, в 2001-м году читает на мехмате лекции, положенные в основу соответствующей части его с Ю.И. Маниным великолепной, упомянутой выше книги по современной теории чисел (выходящей в русском переводе Сергея Горчинского с редактурой Алексея Паршина в 2007г.).

Несколько удивительно, что в московском математическом институте Стеклова – центре математического мира России - доказательство Уайлса не разбиралось на семинарах, а изучалось только отдельными профильными экспертами. Тем более, не разбиралось и доказательство уже полной гипотезы Таниямы-Шимуры-Вейля (Уайлс доказал только ее часть, достаточную для доказательства теоремы Ферма). Это доказательство было дано в 2000 году уже целым коллективом зарубежных математиков, включая Ричарда Тейлора – соавтора Уайлса по завершающему этапу доказательства теоремы Ферма.

Также не отмечалось и публичных высказываний и, тем более, дискуссий со стороны известных российских математиков по поводу доказательства Уайлса. Известна довольно резкая дискуссия между россиянином В. Арнольдом («скептиком метода доказательства») и американцем С. Ленгом («энтузиастом метода доказательства»), однако, ее следы теряются в западных изданиях. В российской же центральной математической прессе за время, прошедшее со времени публикации доказательства Уайлса, не было публикаций на тему доказательства. Пожалуй, единственной публикацией на эту тему был перевод статьи канадского математика Генри Дармона даже еще неокончательной версии доказательства в «Успехах математических наук» в 1995 году (забавно, что полное доказательство уже было опубликовано).

На этом «сонном» математическом фоне, несмотря на крайне абстрактный характер доказательства Уайлса, некоторые бесстрашные теоретические физики включили его в зону своего потенциального интереса и начали его изучение, надеясь рано или поздно найти приложения математики Уайлса. Это не может не радовать, хотя бы потому, что эта математика все эти годы находилась практически в самоизоляции.

Тем не менее, проблема адаптации доказательства, крайне отягчающая его прикладной потенциал, оставалась и остается очень актуальной. На сегодняшний день оригинальный крайне специальный текст статьи Уайлса и совместной статьи Уайлса и Тейлора уже адаптирован, правда только для достаточно узкого круга профессиональных математиков. Это сделано в упоминавшейся книге Ю. Манина и А. Панчишкина. Им удалось успешно сгладить определенную искусственность оригинального доказательства. Кроме того, американский математик Серж Ленг, яростный пропагандист доказательства Уайлса (к сожалению, ушедший от нас в сентябре 2005-го года), включил некоторые наиболее важные конструкции доказательства в третье издание своего, ставшего классическим, университетского учебника «Алгебра».

В качестве примера искусственности оригинального доказательства отметим, что одной из особенно ярких черт, создающих такое впечатление, является особая роль отдельных простых чисел, таких как 2, 3, 5, 11, 17, а также отдельных натуральных чисел, таких как 15, 30 и 60. Помимо прочего, совершенно очевидно, что доказательство не геометрично в самом обычном смысле. Оно не содержит естественных геометрических образов, к которым можно было бы привязаться для лучшего понимания текста. Сверхмощная «затерминологизированная» абстрактная алгебра и «продвинутая» теория чисел чисто психологически бьют по возможности восприятию доказательства даже квалифицированного читателя-математика.

Остается только удивляться, почему же в такой ситуации эксперты доказательства, включая самого Уайлса, его «не шлифуют», не пропагандируют и не популяризируют явный «математический хит» даже в родном математическом сообществе.

Итак, если говорить коротко, то на сегодняшний день факт доказательства Уайлса является просто фактом доказательства теоремы Ферма со статусом первого правильного доказательства и использованной в нем «некой сверхмощной математики».

По поводу мощной, но не нашедшей приложений математики очень ярко в свое время высказался известный российский математик середины прошлого века, бывший декан мехмата, В.В. Голубев:

«… по остроумному замечанию Ф. Клейна, многие отделы математики представляют подобие тех выставок новейших моделей оружия, которые существуют при фирмах, изготовляющих вооружение; при всем остроумии, вложенном изобретателями, часто бывает, что когда начинается настоящая война, эти новинки оказываются в силу тех или иных причин непригодными… Совершенно ту же картину представляет собой и современное преподавание математики; учащимся даются в руки весьма совершенные и мощные средства математического исследования…, но дальше учащиеся не выносят никакого представления о том, где и как эти мощные и остроумные методы могут быть приложены в решении основной задачи всей науки: в познании окружающего нас мира и в воздействии на него творческой воли человека. В свое время А.П. Чехов сказал, что если в первом действии пьесы на сцене висит ружье, то необходимо, чтобы хотя в третьем действии из него стреляли. Это замечание полностью приложимо и к преподаванию математики: если студентам излагается какая-нибудь теория, то необходимо показать рано или поздно, какие приложения можно сделать из этой теории прежде всего в области механики, физики или техники и в других областях.»


Продолжая эту аналогию можно сказать, что доказательство Уайлса представляет исключительно благоприятный материал для изучения огромного пласта современной фундаментальной математики. Здесь студентам можно показать как задача классической теории чисел тесно связана с такими разделами чистой математики как современная алгебраическая теории чисел, современная теория Галуа, p-адическая математика, арифметическая алгебраическая геометрия, коммутативная и некоммутативная алгебра.

Было бы справедливо, если бы уверенность Уайлса, что изобретенная им математика – математика нового уровня нашла свое подтверждение. И очень не хочется, чтобы эту действительно очень красивую и синтетическую математику постигла участь «невыстрелившего ружья».

И все-таки, зададимся теперь вопросом: можно ли в достаточно доступных терминах описать доказательство Уайлса для широкой интересующейся аудитории?

С точки зрения специалистов это абсолютная утопия. Но давайте, все-таки, попробуем, руководствуясь простым соображением, что теорема Ферма – это утверждение всего лишь о целых точках нашего обычного трехмерного евклидова пространства.

Будем последовательно подставлять точки с целыми координатами в уравнение Ферма.

Уайлс находит оптимальный механизм пересчета целых точек и их тестирования на удовлетворение уравнению теоремы Ферма (после введения необходимых определений такой пересчет как раз и будет соответствовать так называемому «свойству модулярности эллиптических кривых над полем рациональных чисел», описываемому гипотезой Таниямы–Шимуры-Вейля»).

Механизм пересчета оптимизируется с помощью замечательной находки немецкого математика Герхарда Фрея, связавшим потенциальное решение уравнения Ферма с произвольным показателем с другим, совсем непохожим на него, уравнением. Это новое уравнение задается специальной кривой (названной эллиптической кривой Фрея). Эта кривая Фрея задается уравнением совсем несложного вида:

Неожиданность идеи Фрея состояла в переходе от теоретико-числовой природы задачи к ее «скрытому» геометрическому аспекту. А именно: Фрей сопоставил всякому решению уравнения Ферма, то есть числам, удовлетворяющим соотношению


указанную выше кривую. Теперь оставалось показать, что таких кривых не существует при . В этом случае отсюда и следовала бы великая теорема Ферма. Именно такая стратегия и была выбрана Уайлсом в 1986-м году, когда он начал свой феерический штурм.

Изобретение Фрея к моменту «старта Уайлса» было совсем свежим (85-й год) и перекликалось также с относительно недавним подходом французского математика Хеллегуарша (70-е годы), предложившего использовать эллиптические кривые для поиска решений диофантовых уравнений, т.е. уравнений похожих на уравнение Ферма.

Попробуем теперь посмотреть на кривую Фрея с другой точки зрения, а именно, как на инструмент пересчета целых точек в евклидовом пространстве. Другими словами, у нас кривая Фрея будет играть роль формулы, определяющей алгоритм такого пересчета.

В таком контексте можно сказать, что Уайлс изобретает инструменты (специальные алгебраичесие конструкции) для контроля за этим пересчетом. Собственно говоря, этот тонкий инструментарий Уайлса и составляет центрально ядро и основную сложность доказательства. Именно при изготовлении этих инструментов и возникают основные изощренные алгебраические находки Уайлса, которые так непросты для восприятия.

Но все же, самым неожиданным эффектом доказательства, пожалуй, оказывается достаточность использования только одной «фреевской» кривой, представляемой совсем несложной, почти «школьной» зависимостью . Удивительно, что использование только одной такой кривой оказывается достаточным для тестирования всех точек трехмерного евклидова пространства с целыми координатами на предмет удовлетворения их соотношению Большой теоремы Ферма с произвольным показателем степени .

Другими словами, использование всего одной кривой (правда, имеющей специфический вид), доступной для понимания и обычному старшекласснику, оказывается равносильным построению алгоритма (программы) последовательного пересчета целых точек обычного трехмерного пространства. И не просто пересчета, а пересчета с одновременным тестированием целой точки на «ее удовлетворямость» уравнению Ферма.

Именно здесь возникает фантом самого Пьера де Ферма, поскольку при таком пересчете оживает то, что обычно называется «Ferma’t descent», или редукцией (или «методом бесконечного спуска») Ферма.

В этом контексте сразу же становится ясно почему сам Ферма не мог доказать свою теорему по объективным причинам, хотя при этом вполне мог «увидеть» геометрическую идею ее доказательства.

Дело в том, что пересчет проходит по контролем математических инструментов, не имеющих аналогов не только в далеком прошлом, но и неизвестных до Уайлса даже в современной математике.

Самое главное здесь в том, что эти инструменты «минимальны», т.е. их нельзя упростить. Хотя сама по себе эта «минимальность» весьма непроста. И именно осознание Уайлсом этой нетривиальной «минимальности» и стало решающим финальным шагом доказательства. Это как раз и была та самая «вспышка» 19-го сентября 1994 года.

Некоторая проблема, вызывающая неудовлетворенность, здесь все-таки остается – у Уайлса эта минимальная конструкция не описана явно. Поэтому у интересующихся проблемой Ферма еще есть интересная работа - необходима ясная интерпретация этой «минимальности».

Возможно, что именно здесь и должна скрываться геометрия «заалгебраизированного» доказательства. Не исключено, что как раз эту геометрию и чувствовал сам Ферма, когда делал знаменитую запись на узких полях своего трактата: «я нашел поистине замечательное доказательство …».

Теперь непосредственно перейдем к виртуальному эксперименту и попробуем «покопаться» в мыслях математика-юриста Пьера де Ферма.

Геометрический образ так называемой малой теоремы Ферма можно представить в виде окружности, катящейся «без проскальзывания» по прямой и «наматывающей» на себя целые точки. Уравнение малой теоремы Ферма в этой интерпретации получает и физический смысл – смысл закона сохранения такого движения в одномерном дискретном времени.

Эти геометрические и физические образы можно попробовать перенести на ситуацию, когда размерность задачи (число переменных уравнения) увеличивается и уравнение малой теоремы Ферма переходит в уравнение большой теоремы Ферма. А именно: допустим, что геометрия большой теоремы Ферма представляется сферой, катящейся по плоскости и «наматывающей» на себя целые точки на этой плоскости. Важно, что это качение не должно быть произвольным, а «периодическим» (математики также говорят «циклотомическим»). Периодичность качения означает, что вектора линейной и угловой скорости катящейся максимально общим образом сферы через определенное фиксированное время (период) повторяются по величине и по направлению. Такая периодичность аналогична периодичности линейной скорости качения окружности по прямой, моделирующей «малое» уравнение Ферма.

Соответственно, «большое» уравнение Ферма получает смысл закона сохранения указанного выше движения сферы уже в двумерном дискретном времени. Возьмем теперь диагональ этого двумерного времени (именно в этом шаге и состоит вся сложность!). Эта чрезвычайно хитрая и оказывающаяся единственной диагональ и представляет собой уравнение большой теоремы Ферма, когда показатель уравнения равен именно двум.

Важно отметить, что в одномерной ситуации – ситуации малой теоремы Ферма - такой диагонали находить не надо, поскольку время одномерно и диагональ брать не отчего. Поэтому степень переменной в уравнении малой теоремы Ферма может быть произвольной.

Итак, довольно неожиданно, мы получаем мостик к «офизичиванию» большой теоремы Ферма, то есть, к появлению у нее физического смысла. Как тут не вспомнить, что Ферма занимался не чужд был и физики.

Кстати, опыт физики также показывает, что законы сохранения механических систем приведенного выше вида квадратичны по физическим переменным задачи. И наконец, все это вполне согласуется с квадратичной структурой законов сохранения энергии ньютоновской механики, известных из школы.

С точки зрения приведенной выше «физической» интерпретации большой теоремы Ферма свойству «минимальности» соответствует минимальность степени закона сохранения (это двойка). А редукции Ферма и Уайлса соответствует приведение законов сохранения пересчета точек к закону простейшего вида. Этот простейший (минимальный по сложности) персчет как геометрически, так и алгебраически и представляется качением именно сферы по плоскости, поскольку сфера и плоскость – «минимальные», как нам совершенно понятно, двумерные геометрические объекты.

Вся сложность, на первый взгляд отсутствующая, здесь состоит в том, что точное описание такого с виду «простого» движения сферы совсем непросто. Дело вом, что «периодическое» качение сферы «впитывает в себя» кучу так называемых «скрытых» симметрий нашего трехмерного пространства. Эти скрытые симметрии обусловлены нетривиальными сочетаниями (композициями) линейного и углового движения сферы – см. рис.1.



Именно для точного описания этих скрытых симметрий, геометрически закодированных таким хитрым качением сферы (точки с целыми координатами «сидят» в узлах нарисованной решетки), и требуются алгебраические конструкции Уайлса.

В приведенной на рис.1 геометрической интерпретации линейное движение центра сферы «считает» целые точки на плоскости, а ее угловое (или вращательное) движение обеспечивает пространственную (или вертикальную) компоненту пересчета. Вращательное движение сферы не сразу удается «разглядеть» в произвольном качении сферы по плоскости. Именно вращательное движение и соответствует упомянутым выше скрытым симметриям евклидова пространства.

Введенная выше кривая Фрея как раз и «кодирует» наиболее красивый с эстетической точки зрения пересчет целых точек в пространстве, напоминающий движение по винтовой лестнице. Действительно, если следить за кривой, которую заметает некоторая точка сферы за один период, то обнаружится, что наша отмеченная точка заметет кривую, изображенную на рис. 2, напоминающую «двойную пространственну синусоиду» - пространственный аналог графика. Эту красивую кривую можно интерпретировать как график «минимальной» по (то есть ) кривой Фрея. Это и есть график нашего тестирующего пересчета.

Подключив некоторое ассоциативное восприятие этой картины, к своему удивлению мы обнаружим, что, поверхность, ограничиваемая нашей кривой, поразительным образом похожа на поверхность молекулы ДНК - «краеугольного кирпича» биологии! Возможно, что неслучайно терминология ДНК-кодировки конструкций из доказательства Уайлса используется в книге Сингха «Великая теорема Ферма».

Еще раз подчеркнем, что решающим моментом нашей интерпретации оказывается то обстоятельство, что аналогом закона сохранения для малой теоремы Ферма (его степень может быть сколь угодно большой) оказывается уравнение Большой теоремы Ферма именно в случае . Именно этот эффект «минимальности степени закона сохранения качения сферы по плоскости» и соответствует утверждению Большой теоремы Ферма.



Вполне возможно, что сам Ферма видел или чувствовал эти геометрические и физические образы, но при этом не мог предполагать, что их так сложно описать с математической точки зрения. Тем более, он не мог предполагать, что для описания такой, хотя и нетривиальной, но все-таки достаточно прозрачной геометрии, потребуется еще триста пятьдесят лет работы математического сообщества.

Теперь перекинем мостик к современной физике. Предложенный здесь геометрический образ доказательства Уайлса очень близок к геометрии современной физики, пытающейся подобраться к загадке природы гравитации – квантовой общей теории относительности. Для подтверждения этого, с первого взгляда неожиданного, взаимодействия Большой теоремы Ферма и «Большой Физики», вообразим, что катящаяся сфера массивна и «продавливает» плоскость под собой. Интерпретация этого «продавливания» на рис. 3 поразительно напоминает хорошо известную геометрическую интерпретацию общей теории относительности Эйнштейна, описывающей как раз «геометрию гравитации».

А если учесть еще и присутствующую дискретизацию нашей картинки, воплощаемую дискретной целочисленной решеткой на плоскости, то мы и вовсе воочию наблюдаем «квантовую гравитацию»!



Вот на этой на этой мажорной «объединительной» физико-математической ноте и закончим нашу «кавалерийскую» попытку дать наглядное толкование «сверхабстрактного» доказательства Уайлса.

Теперь, пожалуй, следует подчеркнуть, что в любом случае, какое бы ни было правильное доказательство теоремы Ферма, оно обязательно должно их так или иначе использовать конструкции и логику доказательства Уайлса. Обойти все это просто невозможно по причине упомянутого «свойства минимальности» математических инструментов Уайлса, использованных для доказательства. В нашей «геометро-динамической» интерпретации этого доказательства это «свойство минимальности» обеспечивает «минимально необходимые условия» для корректного (т.е. «сходящегося») построения тестирующего алгоритма.

С одной стороны, это огромное огорчение для любителей-ферматистов (если, конечно, они про это узнают; как говорят, «меньше знаешь – лучше спишь»). С другой стороны, природная «неупрощаемость» доказательства Уайлса формально облегчает жизнь профессиональным математикам – они могут не читать периодически возникающие «элементарные» доказательства от любителей математики, ссылаясь на отсутствие соответствия с доказательством Уайлса.

Общий же вывод состоит в том, что и тем и другим надо «напрягаться» и понимать это «изуверское» доказательство, постигая по-сути «всю математику».

Что же еще важно не упустить, подводя итоги всей этой уникальной истории, свидетелями которой мы стали? Сила доказательства Уайлса в том, что оно является не просто формально-логическим рассуждением, а представляет широкий и мощный метод. Это творение представляет собой не отдельный инструмент для доказательства одного отдельно взятого результата, а прекрасный набор хорошо подобранных инструментов, позволяющий «раскалывать» самые разнообразные задачи. Принципиально важно и то, что посмотрев вниз с высоты небоскреба доказательства Уайлса, мы увидим и всю предшествующую математику. Пафос состоит в том, что это будет не «лоскутное», а панорамное видение. Все это говорит не только о научной, но и о методологической преемственности этого поистине магического доказательства. Осталось «всего-то ничего» - только его понять и научиться применять.

Интересно, чем сегодня занят наш герой-современник Уайлс? Об Эндрю никаких особых новостей нет. Он, естественно, получил различные награды и премии, включая ту самую знаменитую обесценившуюся во время первой гражданской войны премию немца Вольфскеля. За все время, прошедшее с момента триумфа доказательства проблемы Ферма до сегодняшних дней, мне удалось заметить только одну, правда как всегда большую, статью в тех же “Annals” (в соавторстве со Скиннером). Может Эндрю опять затаился в преддверии нового математического рывка, например, так называемой “abc”-гипотезы – недавно сформулированной (Массером и Остерле в 1986 году) и считающейся самой главной проблемой теории чисел на сегодняшний день (это «проблема столетия» по выражению Сержа Ленга).

Гораздо больше информации о соавторе Уайлса по завершающей части доказательства – Ричарде Тейлоре. Он был одним из четырех авторов доказательства полной гипотезы Таниямы-Шмуры-Вейля и серьезно претендовал на филдсовскую медаль на математическом конгрессе в Китае в 2002 году. Однако, не получил ее (тогда ее получили всего два математика – русский математик из Принстона Владимир Воеводский «за теорию мотивов» и француз Лоран Лафорг «за важную часть программы Ленглендса»). Тейлор опубликовал за это время немалое количество замечательных работ. И вот недавно, Ричард добился нового большого успеха - доказал очень известную гипотезу – гипотезу Тейта-Саито, также относящуюся к арифметической алгебраической геометрии и обобщающую результаты немецкого. математика 19-го века Г. Фробениуса и российского математика 20-го века Н. Чеботарева.

Давайте напоследок немного пофантазируем. Возможно, настанет время, когда курсы математики в вузах, и даже в школах, будут подстроены под методы доказательства Уайлса. Это означает, что Великая теорема Ферма станет не только модельной математической задачей, но и методологической моделью для преподавания математики. На ее примере можно будет изучать, по сути, все основные разделы математики. Более того, будущая физика, а может быть даже биология и экономика, станут опираться именно на этот математический аппарат. А вдруг?

Кажется, первые шаги в этом направлении уже сделаны. Об этом свидетельствует, например, то, что американский математик Серж Ленг включил в третье издание своего классического руководства по алгебре основные конструкции доказательства Уайлса. Еще дальше идут российские Юрий Манин и Алексей Панчишкин в упомянутом новом издании своей «Современной теории чисел», излагая детально само доказательство в контексте современной математики.

И как теперь не воскликнуть: великая теорема Ферма "умерла" – да здравствует метод Уайлса!

ИСТОРИЯ ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА
Грандиозное событие

Как-то в новогоднем выпуске рассылки о том, как произносить тосты, я вскользь упомянул, что в конце ХХ века произошло одно грандиозное событие, которого многие не заметили - была, наконец-то доказана так называемая Великая теорема Ферма. По этому поводу среди полученных писем я обнаружил два отклика от девушек (одна из них, насколько помню - девятиклассница Вика из Зеленограда), которых удивил данный факт.

А меня удивило то, насколько живо девочки интересуются проблемами современной математики. Поэтому, думаю, что не только девочкам, но и мальчикам всех возрастов - от старшеклассников до пенсионеров, тоже будет интересно узнать историю Великой теоремы.

Доказательство теоремы Ферма - великое событие. А т.к. со словом "великий" не принято шутить, то знать историю теоремы, мне кажется, каждый уважающий себя оратор (а все мы, когда говорим - ораторы) просто обязан.

Если так получилось, что вы не любите математику так, как люблю ее я, то некоторые углубления в детали просматривайте беглым взором. Понимая, что не всем читателям нашей рассылки интересно блуждать в математических дебрях, я постарался не приводить никаких формул (кроме самого уравнения теоремы Ферма и пары гипотез) и максимально упростить освещение некоторых специфических вопросов.

Как Ферма заварил кашу

Французский юрист и по совместительству великий математик XVII века Пьер Ферма (1601-1665) выдвинул одно любопытное утверждение из области теории чисел, которое впоследствии получило название Великой (или Большой) теоремы Ферма. Это одна из самых известных и феноменальных математических теорем. Наверно, ажиотаж вокруг нее был бы не так силен, если бы в книге Диофанта Александрийского (III век н. э.) "Арифметика", которую Ферма частенько штудировал, делая пометки на ее широких полях, и которую любезно сохранил для потомков его сын Сэмюэл, не была обнаружена примерно следующая запись великого математика:

"Я располагаю весьма поразительным доказательством, но оно слишком велико, чтобы его можно было разместить на полях".

Она-то, эта запись, и явилась причиной последующей грандиозной суматохи вокруг теоремы.

Итак, знаменитый ученый заявил, что доказал свою теорему. Давайте же зададимся вопросом: действительно ли он ее доказал или банально соврал? Или есть другие версии, объясняющие появление той записи на полях, не дававшей спокойно спать многим математикам следующих поколений?

История Великой теоремы увлекательна, как приключение во времени. В 1636 году Ферма заявил, что уравнение вида x n +y n =z n не имеет решений в целых числах при показателе степени n>2. Это собственно и есть Большая теорема Ферма. В этой, казалось бы, простой с виду математической формуле Вселенная замаскировала невероятную сложность. Американский математик шотландского происхождения Эрик Темпл Белл в своей книге "Последняя проблема" (1961) даже предположил, что, возможно, человечество прекратит свое существование раньше, чем сможет доказать Великую теорему Ферма.

Несколько странным является то, что почему-то теорема опоздала с появлением на свет, поскольку ситуация назрела давно, ведь ее частный случай при n=2 - другая знаменитая математическая формула - теорема Пифагора, возникла на двадцать два столетия раньше. В отличие от теоремы Ферма, теорема Пифагора имеет бесконечное множество целочисленных решений, например, такие пифагоровы треугольники: (3,4,5), (5,12,13), (7,24,25), (8,15,17) … (27,36,45) … (112,384,400) … (4232, 7935, 8993) …

Синдром Великой теоремы

Кто только не пытался доказать теорему Ферма. Любой оперившийся студент считал своим долгом приложиться к Великой теореме, но доказать ее всё никак никому не удавалось. Сначала не удавалось сто лет. Потом еще сто. И еще. Среди математиков стал развиваться массовый синдром: "Как же так? Ферма доказал, а я что, не смогу, что ли?" - и некоторые из них на этой почве свихнулись в полном смысле этого слова.

Сколько бы теорему не проверяли - она всегда оказывалась верна. Я знал одного энергичного программиста, который был одержим идеей опровергнуть Великую теорему, пытаясь найти хотя бы одно ее решение (контрпример) методом перебора целых чисел с использованием быстродействующего компьютера (в то время чаще именовавшегося ЭВМ). Он верил в успех своего предприятия и любил приговаривать: "Еще немного - и грянет сенсация!". Думаю, что в разных местах нашей планеты имелось немалое количество такого сорта смелых искателей. Ни одного решения он, конечно же, не нашел. И никакие компьютеры, хоть даже со сказочным быстродействием, никогда не смогли бы проверить теорему, ведь все переменные этого уравнения (в том числе и показатели степени) могут возрастать до бесконечности.

Теорема требует доказательства

Математики знают, что если теорема не доказана, из нее может следовать всё что угодно (как истина, так и ложь), как это было с некоторыми другими гипотезами. Например, в одном из своих писем Пьер Ферма высказал предположение, что числа вида 2 n +1 (т.н. числа Ферма) обязательно простые (т.е. не имеют целочисленных делителей и делятся без остатка только на себя и на единицу), если n - степень двойки (1, 2, 4, 8, 16, 32, 64 и т.д.). Эта гипотеза Ферма прожила более ста лет - до тех пор, пока в 1732 году Леонард Эйлер не показал, что

2 32 +1 = 4 294 967 297 = 6 700 417 · 641

Затем еще почти через 150 лет (1880) Фортюне Ландри разложил на множители следующее число Ферма:

2 64 +1 = 18 446 744 073 709 551 617 = 274 177 · 67 280 421 310 721

Как они без помощи компьютеров смогли найти делители этих больших чисел - одному богу известно. В свою очередь Эйлер выдвинул гипотезу, что уравнение x 4 +y 4 +z 4 =u 4 не имеет решений в целых числах. Однако примерно через 250 лет, в 1988 году Науму Элькису из Гарварда удалось обнаружить (уже с помощью компьютерной программы), что

2 682 440 4 + 15 365 639 4 + 18 796 760 4 = 20 615 673 4

Поэтому Большая теорема Ферма требовала доказательства, иначе она была просто гипотезой, и вполне могло быть, что где-то там в бескрайних числовых полях затеряно решение уравнения Великой теоремы.

Самый виртуозный и плодотворный математик XVIII века Леонард Эйлер, архив записей которого человечество разгребало почти целый век, доказал теорему Ферма для степеней 3 и 4 (вернее, он повторил утерянные доказательства самого Пьера Ферма); его последователь в теории чисел, Лежандр (а также независимо от него Дирихле) - для степени 5; Ламе - для степени 7. Но в общем виде теорема оставалась недоказанной.

1 марта 1847 года на заседании Парижской академии наук сразу два выдающихся математика - Габриэль Ламе и Огюстен Коши - заявили, что подошли к завершению доказательства Великой теоремы и устроили гонку, публикуя свои доказательства по частям. Однако поединок между ними был прерван, потому что в их доказательствах была обнаружена одна и та же ошибка, на которую указал немецкий математик Эрнст Куммер.

В начале XX века (1908) состоятельный немецкий предприниматель, меценат и ученый Пауль Вольфскель завещал сто тысяч марок тому, кто предъявит полное доказательство теоремы Ферма. Уже в первый год после опубликования завещания Вольфскеля Геттингентской академией наук, она была завалена тысячами доказательств от любителей математики, и поток этот не прекращался в течение десятилетий, но все они, как вы догадываетесь, содержали в себе ошибки. Говорят, что в академии были заготовлены бланки примерно такого содержания:

Уважаемый __________________________!
В Вашем доказательстве теоремы Ферма на ____ странице в ____ строчке сверху
в формуле:__________________________ обнаружена следующая ошибка:,

Которые рассылались незадачливым соискателям премии.

В то время в кругу математиков появилось полупрезрительное прозвище - фермист . Так называли всякого самоуверенного выскочку, которому не хватало знаний, но зато с лихвой хватало амбиций для того, чтобы второпях попробовать силенки в доказательстве Великой теоремы, а затем, не заметив собственных ошибок, гордо хлопнув себя в грудь, громко заявить: "Я первый доказал теорему Ферма!". Каждый фермист, будь он хоть даже десятитысячным по счету, считал себя первым - это и было смешным. Простой внешний вид Великой теоремы так сильно напоминал фермистам легкую добычу, что их абсолютно не смущало, что даже Эйлер с Гауссом не смогли справиться с ней.

(Фермисты, как ни странно, существуют и ныне. Один из них хоть и не считал, что доказал теорему, как классический фермист, но до недавних пор предпринимал попытки - отказался верить мне, когда я сообщил ему, что теорема Ферма уже доказана).

Наиболее сильные математики, может быть, в тиши своих кабинетов тоже пробовали осторожно подходить к этой неподъемной штанге, но не говорили об этом вслух, дабы не прослыть фермистами и, таким образом, не навредить своему высокому авторитету.

К тому времени появилось доказательство теоремы для показателя степени n<100. Потом для n<619. Надо ли говорить о том, что все доказательства невероятно сложны. Но в общем виде теорема оставалась недоказанной.

Странная гипотеза

До середины ХХ века никаких серьезных продвижений в истории Великой теоремы не наблюдалось. Но вскоре в математической жизни произошло одно интересное событие. В 1955 году 28-летний японский математик Ютака Танияма выдвинул утверждение из совершенно другой области математики, получившее название "гипотезы Таниямы" (она же "гипотеза Таниямы-Шимуры-Вейла"), которое, в отличие от запоздалой теоремы Ферма, опередило свое время.

Гипотеза Таниямы гласит: "каждой эллиптической кривой соответствует определенная модулярная форма". Данное утверждение для математиков той поры звучало примерно так же абсурдно, как для нас звучит утверждение: "каждому дереву соответствует определенный металл". Нетрудно угадать, как может отнестись к подобному утверждению нормальный человек - он попросту не воспримет его всерьез, что и произошло: математики дружно проигнорировали гипотезу.

Небольшое пояснение. Эллиптические кривые, известные с давних пор, имеют двухмерный вид (располагаются на плоскости). Модулярные же функции, открытые в XIX веке, имеют четырехмерный вид, поэтому мы их даже представить себе не можем своими трехмерными мозгами, но можем описать математически; кроме того, модулярные формы удивительны тем, что обладают предельно возможной симметрией - их можно транслировать (сдвигать) в любом направлении, отражать зеркально, менять местами фрагменты, поворачивать бесконечно многими способами - и при этом их вид не изменяется. Как видим, эллиптические кривые и модулярные формы имеют мало общего. Гипотеза же Таниямы утверждает, что описательные уравнения двух соответствующих друг другу этих абсолютно разных математических объектов можно разложить в один и тот же математический ряд.

Гипотеза Таниямы была слишком парадоксальна: она соединила совершенно разные понятия - довольно простые плоские кривые и невообразимые четырехмерные формы. Такое никому не приходило в голову. Когда на международном математическом симпозиуме в Токио в сентябре 1955 года Танияма продемонстрировал несколько соответствий эллиптических кривых модулярным формам, то все увидели в этом не более, чем забавные совпадения. На скромный вопрос Таниямы: возможно ли для каждой эллиптической кривой найти соответствующую модулярную функцию, маститый француз Андре Вейл, который в то время был одним из лучших в мире специалистов в теории чисел, дал вполне дипломатичный ответ, что, дескать, если пытливого Танияму не покинет энтузиазм, то, может быть, ему повезет, и его невероятная гипотеза подтвердится, но это, должно быть, случится не скоро. В общем, как и многие другие выдающиеся открытия, сначала гипотеза Таниямы осталась без внимания, потому что до нее еще не доросли - ее почти никто не понял. Один лишь коллега Таниямы, Горо Шимура, хорошо зная своего высокоодаренного друга, интуитивно чувствовал, что его гипотеза верна.

Через три года (1958) Ютака Танияма покончил жизнь самоубийством (сильны, однако, в Японии самурайские традиции). С точки зрения здравого смысла - никак не понимаемый поступок, особенно, если учесть, что совсем скоро он собирался жениться. Свою предсмертную записку лидер молодых японских математиков начал так: "Еще вчера я не помышлял о самоубийстве. Последнее время мне часто приходилось слышать от других, что я устал умственно и физически. Вообще-то я и сейчас не понимаю, зачем это делаю…" и так далее на трех листах. Жаль, конечно, что так сложилась судьба интересного человека, но все гении немного странные - на то они и гении (на ум почему-то пришли слова Артура Шопенгауэра: "в обычной жизни от гения столько же толку, как от телескопа в театре"). Гипотеза осиротела. Никто не знал, как ее доказать.

Лет десять про гипотезу Таниямы почти не вспоминали. Но в начале 70-х годов она стала популярной - ее регулярно проверяли все, кто смог в ней разобраться - и она всегда подтверждалась (как, собственно, и теорема Ферма), но, как и прежде, никто не мог ее доказать.

Удивительная связь двух гипотез

Прошло еще примерно 15 лет. В 1984 году произошло одно ключевое событие в жизни математики, которое объединило экстравагантную японскую гипотезу с Великой теоремой Ферма. Немец Герхард Фрей выдвинул любопытное утверждение, похожее на теорему: "Если будет доказана гипотеза Таниямы, то, следовательно, будет доказана и Великая теорема Ферма". Другими словами, теорема Ферма является следствием гипотезы Таниямы. (Фрей методом хитроумных математических преобразований свел уравнение Ферма к виду уравнения эллиптической кривой (той самой, которая фигурирует и в гипотезе Таниямы), более-менее обосновал свое предположение, но доказать его не смог). И вот буквально через полтора года (1986) профессор калифорнийского университета Кеннет Рибет четко доказал теорему Фрея.

Что же теперь получилось? Теперь оказалось, что, так как теорема Ферма уже точно является следствием гипотезы Таниямы, нужно всего-навсего доказать последнюю, чтобы сорвать лавры покорителя легендарной теоремы Ферма. Но гипотеза оказалась непростой. К тому же у математиков за столетия появилась аллергия на теорему Ферма, и многие из них решили, что справиться с гипотезой Таниямы также будет практически невозможно.

Смерть гипотезы Ферма. Рождение теоремы

Прошло еще 8 лет. Одному прогрессивному английскому профессору математики из Принстонского университета (Нью-Джерси, США), Эндрю Уайлсу, показалось, что он нашел доказательство гипотезы Таниямы. Если гений не лысый, то, как правило, взъерошенный. Уайлс - взъерошенный, следовательно, похож на гения. Войти в Историю, конечно, заманчиво и очень хотелось, но Уайлс, как настоящий ученый, не обольщался, понимая, что тысячам фермистов до него тоже мерещились призрачные доказательства. Поэтому, прежде, чем представить свое доказательство миру, он тщательно проверял его сам, но осознавая, что может иметь субъективную предвзятость, привлекал к проверкам также и других, например, под видом обычных математических заданий он иногда подкидывал смышленым аспирантам различные фрагменты своего доказательства. Позже Уайлс признался, что никто, кроме его жены не знал, что он работает над доказательством Великой теоремы.

И вот после долгих проверок и тягостных раздумий, Уайлс наконец-то набрался храбрости, а может, как ему самому казалось, наглости и 23 июня 1993 года на математической конференции по теории чисел в Кембридже объявил о своем великом достижении.

Это, конечно, была сенсация. Никто не ожидал такой прыти от малоизвестного математика. Тут же появилась пресса. Всех терзал жгучий интерес. Стройные формулы, как штрихи прекрасной картины, предстали перед любопытными взорами собравшихся. Настоящие математики, они ведь такие - смотрят на всякие уравнения и видят в них не цифры, константы и переменные, а слышат музыку, подобно Моцарту, смотрящему на нотный стан. Точно так же, как мы, читая книгу, смотрим на буквы, но вроде бы как их и не замечаем, а сразу воспринимаем смысл текста.

Презентация доказательства, казалось, прошла успешно - ошибок в нем не нашли - никто не услышал ни одной фальшивой ноты (хотя большинство математиков просто уставилось на него, как первоклассники на интеграл и ничего не поняли). Все решили, что произошло-таки масштабное событие: доказана гипотеза Таниямы, а следовательно и Великая теорема Ферма. Но примерно через два месяца, за несколько дней до того, как рукопись доказательства Уайлса должна была пойти в тираж, в ней было обнаружено несоответствие (Кац, коллега Уайлса, заметил, что один фрагмент рассуждений опирался на "систему Эйлера", но то, что соорудил Уайлс, такой системой не являлось), хотя в целом приемы Уайлса были признаны интересными, изящными и новаторскими.

Уайлс проанализировал ситуацию и решил, что проиграл. Можно себе представить, как он всем своим существом прочувствовал, что значит "от великого до смешного один шаг". "Хотел войти в Историю, а вместо этого вошел в состав команды клоунов и комедиантов - самонадеянных фермистов" - примерно такие мысли изматывали его в тот тягостный период жизни. Для него, серьезного ученого-математика, это была трагедия, и он забросил свое доказательство в долгий ящик.

Но вот через год с небольшим, в сентябре 1994 года, во время размышления над тем узким местом доказательства вместе со своим коллегой Тейлором из Оксфорда, последнего неожиданно осенила мысль, что "систему Эйлера" можно поменять на теорию Ивасава (раздел теории чисел). Тогда они попробовали воспользоваться теорией Ивасава, обойдясь без "системы Эйлера", и у них всё сошлось. Исправленный вариант доказательства был отдан на проверку и через год было объявлено, что в нем всё абсолютно четко, без единой ошибки. Летом 1995 года в одном из первенствующих математических журналов - "Анналы математики" - было опубликовано полное доказательство гипотезы Таниямы (следовательно, Великой (Большой) теоремы Ферма), которое заняло весь номер - свыше ста листов. Доказательство так сложно, что понять его целиком могли всего лишь несколько десятков человек во всем мире.

Таким образом, в конце ХХ века весь мир признал, что на 360 году своей жизни Великая теорема Ферма, которая на самом деле всё это время являлась гипотезой, стала-таки доказанной теоремой. Эндрю Уайлс доказал Великую (Большую) теорему Ферма и вошел в Историю.

Подумаешь, доказали какую-то теорему...

Счастье первооткрывателя всегда достается кому-то одному - это именно он последним ударом молота раскалывает твердый орешек знания. Но нельзя игнорировать множество предыдущих ударов, которые не одно столетие формировали трещину в Великой теореме: Эйлера и Гаусса (королей математики своих времен), Эвариста Галуа (успевшего за свою короткую 21-летнюю жизнь основать теории групп и полей, работы которого были признаны гениальными лишь после его смерти), Анри Пуанкаре (учредителя не только причудливых модулярных форм, но и конвенционализма - философского течения), Давида Гилберта (одного из сильнейших математиков ХХ века), Ютаку Танияму, Горо Шимуру, Морделла, Фальтингса, Эрнста Куммера, Барри Мазура, Герхарда Фрея, Кена Риббета, Ричарда Тейлора и других настоящих ученых (не побоюсь этих слов).

Доказательство Великой теоремы Ферма можно поставить в один ряд с такими достижениями ХХ века, как изобретение компьютера, ядерной бомбы и полет в космос. Хоть о нем и не так широко известно, потому что оно не вторгается в зону наших сиюминутных интересов, как например, телевизор или электрическая лампочка, но оно явилось вспышкой сверхновой звезды, которая, как и все непреложные истины, всегда будет светить человечеству.

Вы можете сказать: "подумаешь, доказали какую-то теорему, кому это надо? ". Справедливый вопрос. Тут в точности сгодится ответ Давида Гилберта. Когда на вопрос: "какая задача сейчас для науки наиболее важна?", он ответил: "поймать муху на обратной стороне Луны", его резонно спросили: "а кому это надо? ", он ответил так: "Это никому не надо. Но подумайте над тем, сколько важных сложнейших задач надо решить, чтобы это осуществить". Подумайте, сколько задач за 360 лет смогло решить человечество, прежде, чем доказать теорему Ферма. В поисках ее доказательства была открыта чуть ли не половина современной математики. Надо также учесть, что математика - авангард науки (и, кстати, единственная из наук, которая строится без единой ошибки), и любые научные достижения и изобретения начинаются именно здесь. Как заметил Леонардо да Винчи, "наукой можно признать лишь то учение, которое подтверждается математически".

* * *

А теперь давайте вернемся в начало нашей истории, вспомним запись Пьера Ферма на полях учебника Диофанта и еще раз зададимся вопросом: действительно ли Ферма доказал свою теорему? Этого мы, конечно, не можем знать наверняка, и как в любом деле тут возникают разные версии:

Версия 1: Ферма доказал свою теорему. (На вопрос: "имел ли Ферма точно такое же доказательство своей теоремы?", Эндрю Уайлс заметил: "Ферма не мог располагать таким доказательством. Это доказательство ХХ века". Мы с вами понимаем, что в XVII веке математика, конечно же, была не та, что в конце ХХ века - в ту эпоху д, Артаньяна, царица наук еще не обладала теми открытиями (модулярные формы, теоремы Таниямы, Фрея и др.), которые только и позволили доказать Великую теорему Ферма. Конечно, можно предположить: чем черт не шутит - а вдруг Ферма догадался иным путем? Эта версия хоть и вероятна, но по оценкам большинства математиков, практически невозможна);
Версия 2: Пьеру Ферма показалось, что он доказал свою теорему, но в его доказательстве были ошибки. (То есть, сам Ферма был также и первым фермистом);
Версия 3: Ферма свою теорему не доказал, а на полях просто соврал.

Если верна одна из двух последних версий, что наиболее вероятно, то тогда можно сделать простой вывод: великие люди, они хоть и великие, но тоже могут ошибаться или иногда не прочь приврать (в основном этот вывод будет полезен для тех, кто склонен безраздельно доверять своим кумирам и прочим властителям дум). Поэтому, читая произведения авторитетных сынов человечества или слушая их пафосные выступления, вы имеете полное право сомневаться в их утверждениях. (Прошу заметить, что сомневаться - не значит отвергать ).



Переиздание материалов статьи возможно только с обязательными ссылками на сайт (в интернете - гиперссылка) и на автора

Пьер Ферма, читая «Арифметику» Диофанта Александрийского и размышляя над её задачами, имел привычку записывать на полях книги результаты своих размышлений в виде кратких замечаний. Против восьмой задачи Диофанта на полях книги, Ферма записал: «Наоборот, невозможно разложить ни куб на два куба, ни биквадрат на два биквадрата, и, вообще, никакую степень, большую квадрата на две степени с тем же показателем. Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки » /Э.Т.Белл «Творцы математики». М.,1979, стр.69 /. Предлагаю Вашему вниманию элементарное доказательство теоремы ферма, которое может понять любой старшеклассник, увлекающийся математикой.

Сравним комментарий Ферма к задаче Диофанта с современной формулировкой великой теоремы Ферма, имеющей вид уравнения.
«Уравнение

x n + y n = z n (где n – целое число большее двух)

не имеет решений в целых положительных числах »

Комментарий находится с задачей в логической связи, аналогичной логической связи сказуемого с подлежащим. То, что утверждается задачей Диофанта, наоборот утверждается комментарием Ферма.

Комментарий Ферма можно так трактовать: если квадратное уравнение с тремя неизвестными имеет бесконечное множество решений на множестве всех троек пифагоровых чисел, то, наоборот, уравнение с тремя неизвестными в степени, большей квадрата

В уравнении нет даже намека на его связь с задачей Диофанта. Его утверждение требует доказательства, но при нём нет условия, из которого следует, что оно не имеет решений в целых положительных числах.

Известные мне варианты доказательства уравнения сводятся к следующему алгоритму.

  1. Уравнение теоремы Ферма принимается за её заключение, в справедливости которого убеждаются при помощи доказательства.
  2. Это же уравнение называют исходным уравнением, из которого должно исходить его доказательство.

В результате образовалась тавтология: «Если уравнение не имеет решений в целых положительных числах, то оно не имеет решений в целых положительных числах ».Доказательство тавтологии заведомо является неправильным и лишенным всякого смысла. Но её доказывают методом от противного.

  • Принимается предположение, противоположное тому, что утверждается уравнением, которое требуется доказать. Оно не должно противоречить исходному уравнению, а оно ему противоречит. Доказывать то, что принято без доказательства, и принимать без доказательства то, что требуется доказать, не имеет смысла.
  • На основании принятого предположения выполняются абсолютно правильные математические операции и действия, чтобы доказать, что оно противоречит исходному уравнению и является ложным.

Поэтому вот уже 370 лет доказательство уравнения великой теоремы Ферма остаётся неосуществимой мечтой специалистов и любителей математики.

Я принял уравнение за заключение теоремы, а восьмую задачу Диофанта и её уравнение — за условие теоремы.


«Если уравнение x 2 + y 2 = z 2 (1) имеет бесконечное множество решений на множестве всех троек пифагоровых чисел, то, наоборот, уравнение x n + y n = z n , где n > 2 (2) не имеет решений на множестве целых положительных чисел.»

Доказательство.

А) Всем известно, что уравнение (1) имеет бесконечное множество решений на множестве всех троек пифагоровых чисел. Докажем, что ни одна тройка пифагоровых чисел, являющаяся решением уравнения (1), не является решением уравнения (2).

На основании закона обратимости равенства, стороны уравнения (1) поменяем местами. Пифагоровы числа (z, х, у ) могут быть истолкованы как длины сторон прямоугольного треугольника, а квадраты ( x 2 , y 2 , z 2 ) могут быть истолкованы как площади квадратов, построенных на его гипотенузе и катетах.

Площади квадратов уравнения (1) умножим на произвольную высоту h :

z 2 h = x 2 h + y 2 h (3)

Уравнение (3) можно трактовать как равенство объема параллелепипеда сумме объёмов двух параллелепипедов.

Пусть высота трех параллелепипедов h = z :

z 3 = x 2 z + y 2 z (4)

Объем куба разложился на два объема двух параллелепипедов. Объём куба оставим без изменений, а высоту первого параллелепипед уменьшим до x и высоту второго параллелепипеда уменьшим до y . Объём куба больше суммы объёмов двух кубов:

z 3 > x 3 + y 3 (5)

На множестве троек пифагоровых чисел (х, у, z ) при n = 3 не может быть ни одного решения уравнения (2). Следовательно, на множестве всех троек пифагоровых чисел невозможно куб разложить на два куба.

Пусть в уравнении (3) высота трёх параллелепипедов h = z 2 :

z 2 z 2 = x 2 z 2 + y 2 z 2 (6)

Объем параллелепипеда разложился на сумму объёмов двух параллелепипедов.
Левую сторону уравнения (6) оставим без изменения. На правой его стороне высоту z 2 уменьшим до х в первом слагаемом и до у 2 во втором слагаемом.

Уравнение (6) обратилось в неравенство:

Объем параллелепипеда разложился на два объема двух параллелепипедов.

Левую сторону уравнения (8) оставим без изменения.
На правой стороне высоту z n-2 уменьшим до x n-2 в первом слагаемом и уменьшим до y n-2 во втором слагаемом. Уравнение (8) обращается в неравенство:

z n > x n + y n (9)

На множестве троек пифагоровых чисел не может быть ни одного решения уравнения (2).

Следовательно, на множестве всех троек пифагоровых чисел при всех n > 2 уравнение (2) не имеет решений.

Получено «постине чудесное доказательство», но только для троек пифагоровых чисел . В этом заключается недостаток доказательства и причина отказа П. Ферма от него.

B) Докажем, что уравнение (2) не имеет решений на множестве троек непифагоровых чисел, представляющем сбой семейство произвольно взятой тройки пифагоровых чисел z = 13, x = 12, y = 5 и семейство произвольно взятой тройки целых положительных чисел z = 21, x = 19, y = 16

Обе тройки чисел являются членами своих семейств:

(13, 12, 12); (13, 12,11);…; (13, 12, 5) ;…; (13,7, 1);…; (13,1, 1) (10)
(21, 20, 20); (21, 20, 19);…;(21, 19, 16);…;(21, 1, 1) (11)

Число членов семейства (10) и (11) равно половине произведения 13 на 12 и 21 на 20, т. е. 78 и 210.

В каждом члене семейства (10) присутствует z = 13 и переменные х и у 13 > x > 0 , 13 > y > 0 1

В каждом члене семейства (11) присутствует z = 21 и переменные х и у , которые принимают значения целых чисел 21 > x >0 , 21 > y > 0 . Переменные последовательно убывают на 1 .

Тройки чисел последовательности (10) и (11) можно представить в виде последовательности неравенств третьей степени:

13 3 < 12 3 + 12 3 ;13 3 < 12 3 + 11 3 ;…; 13 3 < 12 3 + 8 3 ; 13 3 > 12 3 + 7 3 ;…; 13 3 > 1 3 + 1 3
21 3 < 20 3 + 20 3 ; 21 3 < 20 3 + 19 3 ; …; 21 3 < 19 3 + 14 3 ; 21 3 > 19 3 + 13 3 ;…; 21 3 > 1 3 + 1 3

и в виде неравенств четвертой степени:

13 4 < 12 4 + 12 4 ;…; 13 4 < 12 4 + 10 4 ; 13 4 > 12 4 + 9 4 ;…; 13 4 > 1 4 + 1 4
21 4 < 20 4 + 20 4 ; 21 4 < 20 4 + 19 4 ; …; 21 4 < 19 4 + 16 4 ;…; 21 4 > 1 4 + 1 4

Правильность каждого неравенства удостоверяется возвышением чисел в третью и в четвертую степень.

Куб большего числа невозможно разложить на два куба меньших чисел. Он или меньше, или больше, суммы кубов двух меньших чисел.

Биквадрат большего числа невозможно разложить на два биквадрата меньших чисел. Он или меньше, или больше, суммы биквадратов меньших чисел.

С возрастанием показателя степени все неравенства, кроме левого крайнего неравенства, имеют одинаковый смысл:

Неравенств они все имеют одинаковый смысл: степень большего числа больше суммы степеней меньших двух чисел с тем же показателем:

13 n > 12 n + 12 n ; 13 n > 12 n + 11 n ;…; 13 n > 7 n + 4 n ;…; 13 n > 1 n + 1 n (12)
21 n > 20 n + 20 n ; 21 n > 20 n + 19 n ;…; ;…; 21 n > 1 n + 1 n (13)

Левый крайний член последовательностей (12) (13) представляет собой наиболее слабое неравенство. Его правильность определяет правильность всех последующих неравенств последовательности (12) при n > 8 и последовательности (13) при n > 14 .

Среди них не может быт ни одного равенства. Произвольно взятая тройка целых положительных чисел (21,19,16) не является решением уравнения (2) великой теоремы Ферма. Если произвольно взятая тройка целых положительных чисел не является решением уравнения, то уравнение не имеет решений на множестве целых положительных чисел, что и требовалось доказать.

С) В комментарии Ферма к задаче Диофанта утверждается, что невозможно разложить «вообще, никакую степень, большую квадрата, на две степени с тем же показателем ».

Целую степень, большую квадрата, действительно невозможно разложить на две степени с тем же показателем. Нецелую степень, большую квадрата можно разложить на две степени с тем же показателем.

Любая произвольно взятая тройка целых положительных чисел (z, x, y) может принадлежать семейству, каждый член которого состоит из постоянного числа z и двух чисел, меньших z . Каждый член семейства может быть представлен в форме неравенства, а все полученные неравенства — в виде последовательности неравенств:

z n < (z — 1) n + (z — 1) n ; z n < (z — 1) n + (z — 2) n ; …; z n > 1 n + 1 n (14)

Последовательность неравенств (14) начинается неравенствами, у которых левая сторона меньше правой стороны, а оканчивается неравенствами, у которых правая сторона меньше левой стороны. С возрастанием показателя степени n > 2 число неравенств правой стороны последовательности (14) увеличивается. При показателе степени n = k все неравенства левой стороны последовательности изменяют свой смысл и принимают смысл неравенств правой стороны неравенств последовательности (14). В результате возрастания показателя степени у всех неравенств левая сторона оказывается больше правой стороны:

z k > (z-1) k + (z-1) k ; z k > (z-1) k + (z-2) k ;…; z k > 2 k + 1 k ; z k > 1 k + 1 k (15)

При дальнейшем возрастании показателя степени n > k ни одно из неравенств не изменяет своего смысла и не обращается в равенство. На этом основании можно утверждать, что любая произвольно взятая тройка целых положительных чисел (z, x, y) при n > 2 , z > x , z > y

В произвольно взятой тройке целых положительных чисел z может быть сколь угодно большим натуральным числом. Для всех натуральных чисел, которые не больше z , большая теорема Ферма доказана.

D) Каким бы ни было большим число z , в натуральном ряду чисел до него имеется большое, но конечное множество целых чисел, а после него – бесконечное множество целых чисел.

Докажем, что все бесконечное множество натуральных чисел, больших z , образуют тройки чисел, которые не являются решениями уравнения большой теоремы Ферма, например, произвольно взятая тройка целых положительных чисел (z + 1, x ,y) , в которой z + 1 > x и z + 1 > y при всех значениях показателя степени n > 2 не является решением уравнения большой теоремы Ферма.

Произвольно взятая тройка целых положительных чисел (z + 1, x, y) может принадлежать семейству троек чисел, каждый член которого состоят из постоянного числа z + 1 и двух чисел х и у , принимающих различные значения, меньшие z + 1 . Члены семейства могут быть представлены в форме неравенств, у которых постоянная левая сторона меньше, или больше, правой стороны. Неравенства можно упорядоченно расположить в виде последовательности неравенств:

При дальнейшем возрастании показателя степени n > k до бесконечности ни одно из неравенств последовательности (17) не изменяет своего смысла и не обращается в равенство. В последовательности (16) неравенство, образованное из произвольно взятой тройки целых положительных чисел (z + 1, x, y) , может находиться в её правой части в виде (z + 1) n > x n + y n или находиться в её левой части в виде (z + 1) n < x n + y n .

В любом случае тройка целых положительных чисел (z + 1, x, y) при n > 2 , z + 1 > x , z + 1 > y в последовательности (16) представляет собой неравенство и не может представлять собой равенства, т. е. не может представлять собой решения уравнения большой теоремы Ферма.

Легко и просто понять происхождение последовательности степенных неравенств (16), в которой последнее неравенство левой стороны и первое неравенство правой стороны являются неравенствами противоположного смысла. Наоборот, нелегко и непросто школьникам, старшекласснику и старшекласснице, понять, каким образом из последовательности неравенств (16) образуется последовательность неравенств (17), в которой все неравенства одинакового смысла.

В последовательности (16) увеличение целой степени неравенств на 1 единицу обращает последнее неравенство левой стороны в первое неравенство противоположного смысла правой стороны. Таким образом, количество неравенств девой стороны последовательности уменьшается, а количество неравенств правой стороны увеличивается. Между последним и первым степенными неравенствами противоположного смысла в обязательном порядке находится степенное равенство. Его степень не может быть целым числом, так как между двумя последовательными натуральными числами находятся только нецелые числа. Степенное равенство нецелой степени, по условию теоремы, не может считаться решением уравнения (1).

Если в последовательности (16) продолжать увеличение степени на 1 единицу, то последнее неравенство её левой стороны обратится в первое неравенство противоположного смысла правой стороны. В результате не останется ни одного неравенства левой стороны и останутся только неравенства правой стороны, которые представят собой последовательность усиливающихся степенных неравенств (17). Дальнейшее увеличение их целой степени на 1 единицу лишь усиливает её степенные неравенства и категорически исключает возможность появления равенства в целой степени.

Следовательно, вообще, никакую целую степень натурального числа (z+1) последовательности степенных неравенств (17) невозможно разложить на две целых степени с тем же показателем. Поэтому уравнение (1) не имеет решений на бесконечном множестве натуральных чисел, что и требовалось доказать.

Следовательно, большая теорема Ферма доказана во всей всеобщности:

  • в разделе А) для всех троек (z, x, y) пифагоровых чисел (открытое Ферма поистине чудесное доказательство),
  • в разделе В) для всех членов семейства любой тройки (z, x, y) пифагоровых чисел,
  • в разделе С) для всех троек чисел (z, x, y) , не больших числа z
  • в разделе D) для всех троек чисел (z, x, y) натурального ряда чисел.

Изменения внесены 05.09.2010 г.

Какие теоремы можно и какие нельзя доказать от противного

В толковом словаре математических терминов дано определение доказательству от противного теоремы, противоположной обратной теореме.

«Доказательство от противного – метод доказательства теоремы (предложения), состоящий в том, что доказывают не саму теорему, а ей равносильную (эквивалентную), противоположную обратной (обратную противоположной) теорему. Доказательство от противного используют всякий раз, когда прямую теорему доказать трудно, а противоположную обратной легче. При доказательстве от противного заключение теоремы заменяется её отрицанием, и путём рассуждения приходят к отрицанию условия, т.е. к противоречию, к противному (противоположному тому, что дано; это приведение к абсурду и доказывает теорему».

Доказательство от противного очень часто применяется в математике. Доказательство от противного основано на законе исключённого третьего, заключающегося в том, что из двух высказываний (утверждений) А и А (отрицание А) одно из них истинно, а другое ложно». /Толковый словарь математических терминов: Пособие для учителей/О. В. Мантуров [и др.]; под ред. В. А. Диткина.- М.: Просвещение, 1965.- 539 с.: ил.-C.112/.

Не лучше было бы открыто заявить о том, что метод доказательства от противного не является математическим методом, хотя и используется в математике, что он является логическим методом и принадлежит логике. Допустимо ли утверждать, что доказательство от противного «используют всякий раз, когда прямую теорему доказать трудно», когда на самом деле его используют тогда, и только тогда, когда ему нет замены.

Заслуживает особого внимания и характеристика отношения друг к другу прямой и обратной ей теорем. «Обратная теорема для данной теоремы (или к данной теореме) — теорема, в которой условием является заключение, а заключением – условие данной теоремы. Данная теорема по отношению к обратной теореме называется прямой теоремой (исходной). В то же время обратная теорема к обратной теореме будет данной теоремой; поэтому прямая и обратная теоремы называются взаимно обратными. Если прямая (данная) теорема верна, то обратная теорема не всегда верна. Например, если четырёхугольник – ромб, то его диагонали взаимно перпендикулярны (прямая теорема). Если в четырёхугольнике диагонали взаимно перпендикулярны, то четырёхугольник есть ромб – это неверно, т. е. обратная теорема неверна». /Толковый словарь математических терминов: Пособие для учителей/О. В. Мантуров [и др.]; под ред. В. А. Диткина.- М.: Просвещение, 1965.- 539 с.: ил.-C.261 /.

Данная характеристика отношения прямой и обратной теорем не учитывает того, что условие прямой теоремы принимается как данное, без доказательства, так что его правильность не имеет гарантии. Условие обратной теоремы не принимается как данное, так как оно является заключением доказанной прямой теоремы. Его правильность засвидетельствована доказательством прямой теоремы. Это существенное логическое различие условий прямой и обратной теорем оказывается решающим в вопросе какие теоремы можно и какие нельзя доказать логическим методом от противного.

Допустим, что на примете имеется прямая теорема, которую доказать обычным математическим методом можно, но трудно. Сформулируем её в общем виде в краткой форме так: из А следует Е . Символ А имеет значение данного условия теоремы, принятого без доказательства. Символ Е имеет значение заключения теоремы, которое требуется доказать.

Доказывать прямую теорему будем от противного, логическим методом. Логическим методом доказывается теорема, которая имеет не математическое условие, а логическое условие. Его можно получить, если математическое условие теоремы из А следует Е , дополнить прямо противоположным условием из А не следует Е .

В результате получилось логическое противоречивое условие новой теоремы, заключающее в себе две части: из А следует Е и из А не следует Е . Полученное условие новой теоремы соответствует логическому закону исключённого третьего и соответствует доказательству теоремы методом от противного.

Согласно закону, одна часть противоречивого условия является ложной, другая его часть является истинной, а третье – исключено. Доказательство от противного имеет совей задачей и целью установить, именно какая часть из двух частей условия теоремы является ложной. Как только будет определена ложная часть условия, так будет установлено, что другая часть является истинной частью, а третье — исключено.

Согласно толковому словарю математических терминов, «доказательство есть рассуждение, в ходе которого устанавливается истинность или ложность какого-либо утверждения (суждения, высказывания, теоремы)» . Доказательство от противного есть рассуждение, в ходе которого устанавливается ложность (абсурдность) заключения, вытекающего из ложного условия доказываемой теоремы.

Дано: из А следует Е и из А не следует Е .

Доказать: из А следует Е .

Доказательство : Логическое условие теоремы заключает в себе противоречие, которое требует своего разрешения. Противоречие условия должно найти своё разрешение в доказательстве и его результате. Результат оказывается ложным при безупречном и безошибочном рассуждении. Причиной ложного заключения при логически правильном рассуждении может быть только противоречивое условие: из А следует Е и из А не следует Е .

Нет и тени сомнения в том, что одна часть условия является ложной, а другая в этом случае является истинной. Обе части условия имеют одинаковое происхождение, приняты как данные, предположенные, одинаково возможные, одинаково допустимые и т. д. В ходе логического рассуждения не обнаружено ни одного логического признака, который отличал бы одну часть условия от другой. Поэтому в одной и той же мере может быть из А следует Е и может быть из А не следует Е . Утверждение из А следует Е может быть ложным , тогда утверждение из А не следует Е будет истинным. Утверждение из А не следует Е может быть ложным, тогда утверждение из А следует Е будет истинным.

Следовательно, прямую теорему методом от противного доказать невозможно.

Теперь эту же прямую теорему докажем обычным математическим методом.

Дано: А .

Доказать: из А следует Е .

Доказательство.

1. Из А следует Б

2. Из Б следует В (по ранее доказанной теореме)).

3. Из В следует Г (по ранее доказанной теореме).

4. Из Г следует Д (по ранее доказанной теореме).

5. Из Д следует Е (по ранее доказанной теореме).

На основании закона транзитивности, из А следует Е . Прямая теорема доказана обычным методом.

Пусть доказанная прямая теорема имеет правильную обратную теорему: из Е следует А .

Докажем её обычным математическим методом. Доказательство обратной теоремы можно выразить в символической форме в виде алгоритма математических операций.

Дано: Е

Доказать: из Е следует А .

Доказательство.

1. Из Е следует Д

2. Из Д следует Г (по ранее доказанной обратной теореме).

3. Из Г следует В (по ранее доказанной обратной теореме).

4. Из В не следует Б (обратная теорема неверна). Поэтому и из Б не следует А .

В данной ситуации продолжать математическое доказательство обратной теоремы не имеет смысла. Причина возникновения ситуации – логическая. Неверную обратную теорему ничем заменить невозможно. Следовательно, данную обратную теорему доказать обычным математическим методом невозможно. Вся надежда – на доказательство данной обратной теоремы методом от противного.

Чтобы её доказать методом от противного, требуется заменить её математическое условие логическим противоречивым условием, заключающим в себе по смыслу две части – ложную и истинную.

Обратная теорема утверждает: из Е не следует А . Её условие Е , из которое следует заключение А , является результатом доказательства прямой теоремы обычным математическим методом. Это условие необходимо сохранить и дополнить утверждением из Е следует А . В результате дополнения получается противоречивое условие новой обратной теоремы: из Е следует А и из Е не следует А . Исходя из этого логически противоречивого условия, обратную теорему можно доказать посредством правильного логического рассуждения только, и только, логическим методом от противного. В доказательстве от противного любые математические действия и операции подчинены логическим и поэтому в счёт не идут.

В первой части противоречивого утверждения из Е следует А условие Е было доказано доказательством прямой теоремы. Во второй его части из Е не следует А условие Е было предположено и принято без доказательства. Какое-то из них одно является ложным, а другое – истинным. Требуется доказать, какое из них является ложным.

Доказываем посредством правильного логического рассуждения и обнаруживаем, что его результатом является ложное, абсурдное заключение. Причиной ложного логического заключения является противоречивое логическое условие теоремы, заключающее в себе две части – ложную и истинную. Ложной частью может быть только утверждение из Е не следует А , в котором Е было принято без доказательства. Именно этим оно отличается от Е утверждения из Е следует А , которое доказано доказательством прямой теоремы.

Следовательно, истинным является утверждение: из Е следует А , что и требовалось доказать.

Вывод : логическим методом от противного доказывается только та обратная теорема, которая имеет доказанную математическим методом прямую теорему и которую математическим методом доказать невозможно.

Полученный вывод приобретает исключительное по важности значение в отношении к методу доказательства от противного великой теоремы Ферма. Подавляющее большинство попыток её доказать имеет в своей основе не обычный математический метод, а логический метод доказательства от противного. Доказательство большой теоремы Ферма Уайлса не является исключением.

Дмитрий Абраров в статье «Теорема Ферма: феномен доказательств Уайлса» опубликовал комментарий к доказательству большой теоремы Ферма Уайлсом. По Абрарову, Уайлс доказывает большую теорему Ферма с помощью замечательной находки немецкого математика Герхарда Фрея (р. 1944), связавшего потенциальное решение уравнения Ферма x n + y n = z n , где n > 2 , с другим, совершенно непохожим на него, уравнением. Это новое уравнение задаётся специальной кривой (названной эллиптической кривой Фрея). Кривая Фрея задаётся уравнением совсем несложного вида:
.

«А именно Фрей сопоставил всякому решению (a, b, c) уравнение Ферма, то есть числам, удовлетворяющим соотношению a n + b n = c n , указанную выше кривую. В этом случае отсюда следовала бы великая теорема Ферма». (Цитата по: Абраров Д. «Теорема Ферма: феномен доказательств Уайлса»)

Другими словами, Герхард Фрей предположил, что уравнение большой теоремы Ферма x n + y n = z n , где n > 2 , имеет решения в целых положительных числах. Этими же решения являются, по предположению Фрея, решениями его уравнения
y 2 + x (x — a n) (y + b n) = 0 , которое задаётся его эллиптической кривой.

Эндрю Уайлс принял эту замечательную находку Фрея и с её помощью посредством математического метода доказал, что этой находки, то есть эллиптической кривой Фрея, не существует. Поэтому не существует уравнения и его решений, которые задаются несуществующей эллиптической кривой, Поэтому Уайлсу следовало бы принять вывод о том, что не существует уравнения большой теоремы Ферма и самой теоремы Ферма. Однако им принимается более скромное заключение том, что уравнение большой теоремы Ферма не имеет решений в целых положительных числах.

Неопровержимым фактом может являться то, что Уайлсом принято предположение, прямо противоположное по смыслу тому, что утверждается большой теоремой Ферма. Оно обязывает Уайлса доказывать большую теорему Ферма методом от противного. Последуем и мы его примеру и посмотрим, что из этого примера получается.

В большой теореме Ферма утверждается, что уравнение, x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах.

Согласно логическому методу доказательства от противного, это утверждение сохраняется, принимается как данное без доказательства, и затем дополняется противоположным по смыслу утверждением: уравнение x n + y n = z n , где n > 2 , имеет решения в целых положительных числах.

Предположенное утверждение так же принимается как данное, без доказательства. Оба утверждения, рассматриваемые с точки зрения основных законов логики, являются одинаково допустимыми, равноправными и одинаково возможными. Посредством правильного рассуждения требуется установить, именно какое из них является ложным, чтобы затем установить, что другое утверждение является истинным.

Правильное рассуждение завершается ложным, абсурдным заключением, логической причиной которого может быть только противоречивое условие доказываемой теоремы, заключающее в себе две части прямо противоположного смысла. Они и явились логической причиной абсурдного заключения, результата доказательства от противного.

Однако в ходе логически правильного рассуждения не было обнаружено ни одного признака, по которому можно было бы установить, какое именно утверждение является ложным. Им может быть утверждение: уравнение x n + y n = z n , где n > 2 , имеет решений в целых положительных числах. На этом же основании им может быть утверждение: уравнение x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах.

В итоге рассуждения вывод может быть только один: большую теорему Ферма методом от противного доказать невозможно .

Было бы совсем другое дело, если бы большая теорема Ферма была обратной теоремой, которая имеет прямую теорему, доказанную обычным математическим методом. В этом случае её можно было доказать от противного. А так как она является прямой теоремой, то её доказательство должно иметь в своей основе не логический метод доказательства от противного, а обычный математический метод.

По словам Д. Абрарова, самый известный из современных российских математиков академик В. И. Арнольд на доказательство Уайлса отреагировал «активно скептически». Академик заявил: «это не настоящая математика – настоящая математика геометрична и сильна связями с физикой».(Цитата по: Абраров Д. «Теорема Ферма: феномен доказательств Уайлса». Заявление академика выражает самую сущность нематематического доказательства Уайлса большой теоремы Ферма.

Методом от противного невозможно доказать ни того, что уравнение большой теоремы Ферма не имеет решений, ни того, что оно имеет решения. Ошибка Уайлса не математическая, а логическая — использование доказательства от противного там, где его использование не имеет смысла и большой теоремы Ферма не доказывает.

Не доказывается большая теорема Ферма и с помощью обычного математического метода, если в ней дано: уравнение x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах, и если в ней требуется доказать: уравнение x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах. В такой форме имеется не теорема, а тавтология, лишённая смысла.

Примечание. Моё доказательство БТФ обсуждалось на одном из форумов. Один из участников Trotil, специалист в теории чисел, сделал следующее авторитетное заявление под названием: «Краткий пересказ того, что сделал Миргородский». Привожу его дословно:

«А. Он доказал, что если z 2 = x 2 + y , то z n > x n + y n . Это хорошо известный и вполне очевидный факт.

В. Он взял две тройки — пифагорову и не пифагорову и показал простым перебором, что для конкретного, определённого семейства троек (78 и 210 штук) БТФ выполняется (и только для него).

С. А затем автором опущен тот факт, что из < в последующей степени может оказаться = , а не только > . Простой контрпример — переход n = 1 в n = 2 в пифагоровой тройке.

D. Этот пункт ничего существенного в доказательство БТФ не вносит. Вывод: БТФ не доказана».

Рассмотрю его заключение по пунктам.

А. В нём доказана БТФ для всего бесконечного множества троек пифагоровых чисел. Доказана геометрическим методом, который, как я полагаю, мной не открыт, а переоткрыт. А открыт он был, как я полагаю, самим П. Ферма. Именно его мог иметь в виду Ферма, когда писал:

«Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки». Данное моё предположение основано на том, что в задаче Диофанта, против которой, на полях книги, писал Ферма, речь идёт о решениях диофантова уравнения, которыми являются тройки пифагоровых чисел.

Бесконечное множество троек пифагоровых чисел является решениями диофатова уравнения, а в теореме Ферма, наоборот, ни одно из решений не может быть решением уравнения теоремы Ферма. И к этому факту поистине чудесное доказательство Ферма имеет непосредственное отношение. Позже Ферма мог распространить свою теорему на множество всех натуральных чисел. На множестве всех натуральных чисел БТФ не относится к «множеству исключительно красивых теорем». Это — моё предположение, которое ни доказать, ни опровергнуть невозможно. Его можно и принимать и отвергать.

В. В данном пункте мной доказывается, что как семейство произвольно взятой пифагоровой тройки чисел, так и семейство произвольно взятой не пифагоровой тройки чисел БТФ выполняется, Это — необходимое, но недостаточное и промежуточное звено в моём доказательстве БТФ. Взятые мной примеры семейства тройки пифагоровых чисел и семейства тройки не пифагоровых чисел имеют значение конкретных примеров, предполагающих и не исключающих существование аналогичных других примеров.

Утверждение Trotil, что я «показал простым перебором, что для конкретного, определённого семейства троек (78 и 210 штук) БТФ выполняется (и только для него) лишено основания. Он не может опровергнуть того факта, что я с таким же успехом могу взять другие примеры пифагоровой и не пифагоровой тройки для получения конкретного определённого семейства одной и другой тройки.

Какую пару троек я ни взял бы, проверка их пригодности для решения задачи может быть осуществлена, на мой взгляд, только методом «простого перебора». Какой-то другой метод мне не известен и не требуется. Если он пришёлся не по вкусу Trotil, то ему следовало бы предложить другой метод, чего он не делает. Не предлагая ничего взамен, осуждать «простой перебор», который в данном случае незаменим, некорректно.

С. Мною опущено = между < и < на основании того, что в доказательстве БТФ рассматривается уравнение z 2 = x 2 + y (1), в котором степень n > 2 целое положительное число. Из равенства, находящегося между неравенствами следует обязательное рассмотрение уравнения (1) при нецелом значении степени n > 2 . Trotil, считая обязательным рассмотрение равенства между неравенствами, фактически считает необходимым в доказательстве БТФ рассмотрение уравнения (1) при нецелом значении степени n > 2 . Я это сделал для себя и обнаружил, что уравнение (1) при нецелом значении степени n > 2 имеет решением тройку чисел: z, (z-1), (z-1) при нецелом показателе степени.

Теорема Ферма дразнила математиков более трех веков, хотя она проста на вид, а сам Ферма уверял, что знает, как ее доказать, одна беда - места не хватает записать. Доказать проклятую теорему удалось ученому из Принстона Эндрю Уайлсу около 10 лет назад. «Чердак» вспоминает историю, пожалуй, самого знаменитого доказательства в истории математики.

Уайлсу потребовались годы работы и знание самых современных разделов математики. Недавно он получил за это достижение премию, которую называют Нобелевкой для математиков. При этом формулировка теоремы Ферма крайне проста: она утверждает, что нет таких целых значений x , y и z , для которых бы выполнялось равенство x n +y n =z n при n больше 2. Эту теорему сформулировал французский математик Пьер де Ферма в XVII веке. Читая «Арифметику» Диофанта, он записал уравнение на полях, в той части книги, где речь шла о теореме Пифагора.

Заметки на полях

Теорема Пифагора известна каждому, кто в школе хотя бы иногда не прогуливал математику: в прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы. Теорема была доказана, как можно догадаться, Пифагором, а уже его ученики доказали, что существует бесконечное множество так называемых пифагорейских троек - целых чисел, для которых выполняется условие x 2 +y 2 =z 2 . Например, 3 2 +4 2 =5 2 или 99 2 +4900 2 =4901 2 .

Ферма задался вопросом: а что если вместо квадратов в формуле будут кубы: x 3 +y 3 =z 3 ? Можно ли для такого равенства найти красивые тройки целых чисел? А если в показателе степени будет стоять 4? А если 5? Ферма утверждал, что если показатель степени больше двух, то таких троек целых чисел не существует. Рядом с формулировкой теоремы Ферма оставил коварную запись: «Я нашел поистине удивительное доказательство этого предложения, но поля здесь слишком узки для того, чтобы вместить его». В чем заключалось это доказательство, он так никому и не сообщил.

В обычной жизни Ферма был крупным провинциальным чиновником, а наукой занимался в свободное от работы время. В то время среди математиков было не очень-то принято делиться с коллегами своими результатами. Ферма же выделялся особенной замкнутостью даже среди коллег: он мало с кем обсуждал свои идеи, а когда ему удавалось найти интересное решение сложной математической задачи, он развлекался тем, что отправлял товарищам-математикам формулировки этих задач, но не их решения. Публиковать свои математические выкладки он тоже не стремился.

Французский чиновник и математик Пьер де Ферма

Знаменитая теорема не канула в Лету вместе с другими открытиями Ферма лишь благодаря тому, что старший сын эксцентричного ученого-любителя после смерти отца взялся опубликовать все его отрывочные заметки. В них обнаружилось множество интересных и важных для математики теорем - часто без доказательств или лишь с набросками таковых. С тех пор все они были доказаны, и только уравнение, известное теперь как теорема Ферма, упорно не поддавалось.

Загадка на века

Простота формулировки и замечание, оставленное Ферма по поводу доказательства теоремы, дразнили профессионалов и любителей математики на протяжении веков. Ведь Ферма располагал теми же знаниями, что и его современники, значит, для доказательства теоремы требовалось лишь сделать какой-то необычный ход.

В истории попыток доказать, что «нужных» троек целых чисел не существует, порой случались небольшие прорывы. Так, через сто лет после Ферма Леонарду Эйлеру удалось доказать, что теорема верна при n =3. Другие математики доказали теорему для еще нескольких частных случаев или же намечали возможные подступы к решению задачи. Во второй половине XX века стали доступны компьютеры и математикам удалось показать, что теорема Ферма верна при значениях n от 2 до 500, затем счет пошел на тысячи, затем на миллионы, однако все это по-прежнему не означало, что утверждение Ферма верно для любых значений n .

Дело жизни

Таково было положение дел, когда о теореме впервые узнал десятилетний Эндрю Уайлс. Он загорелся идеей доказать ее, и эта мысль не оставляла ученого на протяжении всей математической карьеры.

Во второй половине 1980-х годов Уайлс полностью сосредоточился на теореме Ферма. Он продолжал преподавать в Принстонском университете, но отказался от участия в конференциях и любой другой публичной деятельности. Уайлс никому не рассказывал о своей цели: во-первых, ему не хотелось тратить время на обсуждения, во-вторых, в случае успеха слава досталась бы ему одному. А в третьих, его могли просто не принять всерьез - уж больно много чудаков и сумасшедших покушалось до него на доказательство великой теоремы. Он понимал, что ему потребуются годы работы и боялся, что, если он будет рассказывать о своей работе, в последний момент решающий шаг сделает кто-то другой. Для того чтобы не вызывать подозрений, Уайлс воспользовался одним из своих исследований, посвященных эллиптическим кривым. Оно было завершено, но математик публиковал его по кусочкам, притворяясь, что продолжает свои исследования в этой области. В тайну своей настоящей работы Уайлс посвятил только жену, и многие коллеги ученого начали считать, что его «исчезновение» связано с тем, что бедняга исчерпал свой математический талант.

Эндрю Уайлс у памятника Пьеру де Ферма. Фото: Klaus Barner/Wikipedia

В 1988 году, когда Уайлс вовсю работал над своим доказательством, японский математик Иоичи Мияока заявил, что ему удалось «взломать» теорему Ферма. Математики всего мира принялись изучать выкладки Мияоки и, к несчастью для него, в рассуждениях обнаружились серьезные пробелы, так что Уайлс продолжил работу.

Однако к 1991 году математик перебрал все доступные ему инструменты, а теорема Ферма все еще не поддавалась. Уайлсу пришлось прервать отшельничество, чтобы пообщаться с коллегами и выяснить, нет ли у тех каких-нибудь новых идей, полезных для его работы. И такие идеи нашлись - работа Уайлса сдвинулась с мертвой точки, и он уже предвидел успех, однако математику нужно было проверить все созданные выкладки. Уайлсу требовался эксперт, владеющий всеми тонкостями использованных им методов, однако это означало, что этого человека придется посвятить в свой замысел. И Уайлс доверился своему коллеге в Принстоне Нику Катцу.

Эксперту предстояло разобраться в работе, которую Уайлс вел в течение нескольких лет. Подступиться к такому объему материала было непросто, и Уайлс с Катцом нашли изящный выход. Уайлс объявил курс лекций для аспирантов с весьма расплывчатым названием «Вычисления по поводу эллиптических кривых». На лекциях Уайлс детально излагал ту часть доказательства, в которой он не был уверен и которая нуждалась в проверке. Только Катц знал, к чему все эти выкладки, для всех остальных слушателей это был просто курс лекций, причем крайне сложный, очень детальный и не очень понятно, к чему применимый. Постепенно слушатели разбежались, и в конце концов в аудитории на лекциях присутствовали лишь сами Уайлс и Катц.

Теорема доказана...

Проверка позволила убедиться, что в доказательстве Уайлса нет пробелов. В 1993 году он был уверен, что в его работе все верно. Ученый представил результат своих трудов на крупном математическом симпозиуме в Кембридже в конце июня 1993 года.

Весть о том, что теорема Ферма доказана, наделала много шуму. Тем более что для завершения работы Уайлсу потребовалось сначала доказать так называемую гипотезу Таниямы-Шимуры. Для математиков она не менее, а может быть даже более важна, чем собственно теорема Ферма, так как позволяет установить связь между разделами математики, ранее казавшимися крайне далекими друг от друга. В прессе поднялась шумиха, и Уайлс стал знаменитостью.

...или все-таки нет?

Он отправил свое доказательство для публикации в научный журнал, и шестеро рецензентов принялись за тщательную проверку его выкладок, занимавших 200 страниц. Одна из частей доказательства попала на проверку Катцу. С большинством вопросов, возникающих у рецензентов, Уайлс легко справлялся, однако у Катца возник небольшой вопрос, на который автор доказательства не смог сразу ответить. И чем больше он углублялся в разъяснения, тем очевиднее становилось, что речь идет не о небольшой ошибке, а о серьезной проблеме, пропущенной Катцом и Уайлсом, даже несмотря на устроенный ими курс лекций именно по самой «проблемной» части доказательства.

Уайлс надеялся «починить» доказательство, найдя способ устранить ошибку, но ему это никак не удавалось, и среди математиков поползли слухи, что и на этот раз доказательство теоремы Ферма не выдержало критики. Конечно, Уайлсом и без того была проделана огромная работа, которая дала много важных результатов, но он хотел доказать теорему Ферма, и для него найденная ошибка была кошмаром.

Уайлс снова скрылся от публики и работал лишь с одним из рецензентов своей статьи (и по совместительству бывшим аспирантом) Ричардом Тейлором. Тейлор для этого специально приехал в Принстон. Все лето 1994 года они искали решение проблемы и не нашли. Уайлс уже готов был смириться с поражением, но Тейлор уговорил его продолжить поиски до октября, когда Тейлору нужно было уезжать.

Не надеясь найти решение, Уайлс, по крайней мере, решил понять, почему в его выкладки вкралась ошибка. Утром 19 сентября 1994 года математик сидел в своем кабинете, изучая использованные им методы доказательства, и внезапно его озарило. Он понял, что нужно сделать, чтобы его доказательство снова заработало. Наконец-то он смог отправить статью с доказательством теоремы Ферма, а также совместную с Тейлором статью с необходимыми дополнительными доказательствами в редакцию журнала Annals of Mathematics . Эти работы были опубликованы в 1995 году. Теорема Ферма была доказана,теперь - без всяких сомнений.

Грандиозная шутка

И все же в этой истории осталась одна загадка. Три с половиной века математики бились над теоремой Ферма, а ее доказательство потребовало использования самых современных методов и доказательства другой важной теоремы, сформулированной лишь в XX веке. Всего этого во времена Ферма просто не было. Действительно ли он располагал «поистине удивительным доказательством» своей теоремы? Есть подозрение, что нет, ибо в записках Ферма остались следы поисков решений при n =4 и n =5, что было бы излишне, будь у математика доказательство теоремы в общем виде. Но даже если самонадеянный математик-затворник ошибся, значение созданной им интриги трудно переоценить. Ощущение, что «истина где-то рядом» вдохновляло на поиски решения многих математиков, и кто знает, как сложилась бы судьба теоремы, не будь она столь популярна.

Екатерина Боровикова

Для целых чисел n больше 2 уравнение x n + y n = z n не имеет ненулевых решений в натуральных числах.

Вы, наверное, помните со школьных времен теорему Пифагора : квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов. Возможно, вы помните и классический прямоугольный треугольник со сторонами, длины которых соотносятся как 3: 4: 5. Для него теорема Пифагора выглядит так:

Это пример решения обобщенного уравнения Пифагора в ненулевых целых числах при n = 2. Великая теорема Ферма (ее также называют «Большой теоремой Ферма» и «Последней теоремой Ферма») состоит в утверждении, что при значениях n > 2 уравнения вида x n + y n = z n не имеют ненулевых решений в натуральных числах.

История Великой теоремы Ферма весьма занимательна и поучительна, и не только для математиков. Пьер де Ферма внес вклад в развитие самых различных областей математики, однако основная часть его научного наследия была опубликована лишь посмертно. Дело в том, что математика для Ферма была чем-то вроде хобби, а не профессиональным занятием. Он переписывался с ведущими математиками своего времени, однако публиковать свои работы не стремился. Научные труды Ферма в основном обнаружены в форме частной переписки и обрывочных записей, часто сделанных на полях различных книг. Именно на полях (второго тома древнегреческой «Арифметики» Диофанта. - Прим. переводчика ) вскоре после смерти математика потомки и обнаружили формулировку знаменитой теоремы и приписку:

«Я нашел этому поистине чудесное доказательство, но поля эти для него слишком узки ».

Увы, судя по всему, Ферма так и не удосужился записать найденное им «чудесное доказательство», и потомки безуспешно искали его три с лишним века. Из всего разрозненного научного наследия Ферма, содержащего немало удивительных утверждений, именно Великая теорема упорно не поддавалась решению.

Кто только не брался за доказательство Великой теоремы Ферма - всё тщетно! Другой великий французский математик, Рене Декарт (René Descartes, 1596–1650), называл Ферма «хвастуном», а английский математик Джон Уоллис (John Wallis, 1616–1703) - и вовсе «чертовым французом». Сам Ферма, правда, все-таки оставил после себя доказательство своей теоремы для случая n = 4. С доказательством для n = 3 справился великий швейцарско-российский математик XVIII века Леонард Эйлер (1707–83), после чего, не сумев найти доказательств для n > 4, в шутку предложил устроить обыск в доме Ферма, чтобы найти ключ к утерянному доказательству. В XIX веке новые методы теории чисел позволили доказать утверждение для многих целых чисел в пределах 200, однако, опять же, не для всех.

В 1908 году была учреждена премия в размере 100 000 немецких марок за решение этой задачи. Призовой фонд был завещан германским промышленником Паулем Вольфскелем (Paul Wolfskehl), который, согласно преданию, собирался покончить жизнь самоубийством, но так увлекся Великой теоремой Ферма, что передумал умирать. С появлением арифмометров, а затем и компьютеров планка значений n стала подниматься всё выше - до 617 к началу Второй мировой войны, до 4001 в 1954 году, до 125 000 в 1976 году. В конце XX столетия мощнейшие компьютеры военных лабораторий в Лос-Аламосе (Нью-Мексико, США) были запрограммированы на решение задачи Ферма в фоновом режиме (по аналогии с режимом экранной заставки персонального компьютера). Таким образом удалось показать, что теорема верна для невероятно больших значений x, y, z и n , но строгим доказательством это послужить не могло, поскольку любые следующие значения n или тройки натуральных чисел могли опровергнуть теорему в целом.

Наконец в 1994 году английский математик Эндрю Джон Уайлс (Andrew John Wiles, р. 1953), работая в Принстоне, опубликовал доказательство Великой теоремы Ферма, которое, после некоторых доработок, было признано исчерпывающим. Доказательство заняло более ста журнальных страниц и основывалось на использовании современного аппарата высшей математики, который в эпоху Ферма разработан не был. Так что же тогда имел в виду Ферма, оставляя на полях книги сообщение о том, что доказательство им найдено? Большинство математиков, с которыми я беседовал на эту тему, указывали, что за века накопилось более чем достаточно некорректных доказательств Великой теоремы Ферма, и что, скорее всего, сам Ферма нашел подобное доказательство, однако не сумел усмотреть в нем ошибку. Впрочем, не исключено, что все-таки имеется какое-то короткое и изящное доказательство Великой теоремы Ферма, которое никто до сих пор не нашел. С уверенностью можно утверждать лишь одно: сегодня мы точно знаем, что теорема верна. Большинство математиков, я думаю, безоговорочно согласятся с Эндрю Уайлсом, который заметил по поводу своего доказательства: «Теперь наконец мой ум спокоен».