Концентрация ионов калия и натрия в клетке. Что произойдет с мембранным потенциалом покоя, если внутри аксона уменьшить концентрацию ионов калия Концентрация ионов натрия в цитоплазме

Мысль о двух формах конвертируемой энергии я высказал в 1975 году. Спустя два года эта точка зрения была поддержана Митчелом. А в группе А. Глаголева тем временем начались опыты по проверке одного из предсказаний этой новой концепции.

Я рассуждал следующим образом. Если протонный потенциал - разменная монета, то клетка должна располагать достаточным количеством, таких «денежных знаков».

Это требование выполнялось, если речь шла об АТФ. Клетка всегда содержит довольно большие количества АТФ, причем приняты меры для стабилизации этого количества в условиях меняющейся конъюнктуры - непрерывно варьирующих скоростей образования и использования АТФ. Есть особое вещество - креатин-фосфат, участвующее только в одной реакции - фосфорилировании АДФ:

АДФ + креатинфосфат ⇔ АТФ + креатин.

Когда АТФ в избытке, а АДФ в дефиците, реакция идет справа налево и накапливается креатинфосфат, которого в этих условиях становится много больше, чем АТФ. Но стоит повыситься уровню АДФ и уменьшиться АТФ, как реакция меняет направление, и креатинфосфат оказывается поставщиком АТФ. Тем самым креатинфосфат выполняет свою функцию стабилизатора, буфера уровня АТФ.

А как обстоят дела с протонным потенциалом?

Несложный расчет позволяет перевести одну энергетическую «валюту» в другую. Этот расчет показывает, что количество энергии, накопленное, к примеру, бактериальной клеткой в виде протонного потенциала, оказывается почти в тысячу раз меньшим, чем количество АТФ, если протонный потенциал находится в электрической форме. Это количество одного порядка с числом генераторов и потребителей потенциала в бактериальной мембране.

Такая ситуация создает особую необходимость в буферной системе, стабилизирующей уровень протонного потенциала. В противном случае даже кратковременное превышение общей скорости потребляющих потенциал процессов над скоростью его генерации приведет к исчезновению потенциала и остановке всех систем, питаемых потенциалом.

Итак, должен быть буфер для протонного потенциала наподобие креатинфосфата для АТФ. Но что за компонент подобрала природа на такую роль?

Обдумывая эту проблему, я попытался найти какую-нибудь связанную с потенциалом биологическую систему, функция которой была бы неизвестна.

Одна из старых загадок биологии: зачем клетка поглощает ионы калия и выбрасывает ионы натрия, создавая дорогостоящую асимметрию в распределении этих близких по своим свойствам ионов между цитоплазмой и окружающей средой? Практически в любой живой клетке ионов калия намного больше, чем ионов натрия, в то время как в среде натрий находится в огромном избытке над калием. Может быть, Na + - яд для клетки?

Нет, это не так. Хоть некоторые ферментные системы действительно лучше работают в КСl, чем в NaCl, это выглядит вторичным приспособлением к «многокалиевой» и «малонатриевой» внутренней среде клетки. За огромный срок биологической эволюции клетка могла бы приспособиться к естественному соотношению ионов щелочных металлов во внешней среде. Живут же галофильные бактерии в насыщенном растворе NaCl, причем концентрация Na + в их цитоплазме иногда доходит до моля на литр, что почти в тысячу раз больше концентрации Na + в обычных клетках. Итак, Na + не яд.

Заметим, что те же галофильные бактерии поддерживают внутриклеточную концентрацию К + около 4 молей на литр, тратя на создание натрий-калиевого градиента колоссальные по масштабам клетки количества энергетических ресурсов.

Известно, что возбудимые клетки животных, такие, как нейроны, используют натрий-калиевый градиент для проведения нервного импульса. Но как быть с другими типами клеток, например, с бактериями?

Давайте обратимся к механизму транспорта К + и Na + через бактериальную мембрану. Известно, что между цитоплазмой бактерии и внешней средой существует разность электрических потенциалов, поддерживаемая работой белков-генераторов в бактериальной мембране. Откачивая протоны изнутри клетки наружу, белки-генераторы тем самым заряжают внутренность бактерии отрицательно. В этих условиях накопление ионов К + внутри клетки могло бы происходить просто за счет электрофореза - движения положительно заряженного иона калия в отрицательно заряженную цитоплазму бактерии.

При этом поток калия должен разряжать мембрану, предварительно заряженную протонными генераторами.

В свою очередь, разрядка мембраны должна немедленно активировать работу генераторов.

Это означает, что энергетические ресурсы, затрачиваемые на генерацию разности электрических потенциалов между клеткой и средой, будут использованы для концентрирования ионов К + внутри клетки. Конечным балансом такого процесса окажется обмен внутриклеточных ионов Н + на внеклеточные ионы К + (ионы Н + откачиваются белками-генераторами наружу, ионы К + поступают внутрь, двигаясь в электрическом поле, созданном движением ионов Н +).

Стало быть, внутри клетки будет создаваться не только избыток ионов К + , но и дефицит ионов Н + .

Этот дефицит можно использовать для откачки ионов Na + . Сделать это можно следующим образом. Известно, что бактерии располагают особым переносчиком ионов натрия, обменивающим Na + на Н + (этот переносчик носит название Nа + /Н + -антипортера). В условиях нехватки Н + в цитоплазме антипорт может компенсировать протонный дефицит, перенося Н + из внешней среды внутрь клетки. Произвести такой антипорт переносчик может только одним способом: обменяв внешний на внутренний Na + . Значит, движение ионов Н + внутрь клетки может быть использовано для откачки из той же клетки ионов Na + .

Вот мы и создали калий-натриевый градиент: внутри клетки накопили К + и откачали оттуда Na + . Движущей силой этих процессов был создаваемый белками-генераторами протонный потенциал. (Направление потенциала было таково, что внутренность клетки заряжалась отрицательно и там возникала нехватка ионов водорода.)

Допустим теперь, что протонные генераторы по какой-то причине выключились. Что произойдет в этих новых условиях с калий-натриевым градиентом?

Конечно же, он рассеется: ионы К + вытекут из клетки в окружающую среду, где их мало, ионы Na + войдут внутрь, где эти ионы в дефиците.

Но вот что интересно. Рассеиваясь, калий-натриевый градиент сам окажется генератором протонного потенциала того же направления, что образовывался при работе белков-генераторов.

Действительно, выход иона К + как положительно заряженной частицы создает диффузионную разность потенциалов на клеточной мембране со знаком «минус» внутри клетки. Вход Na + при участии Nа + /Н + - антипортера будет сопровождаться выходом Н + , то есть созданием дефицита Н + внутри клетки.

Так что же получается? Когда белки-генераторы работают, создаваемый ими протонный потенциал расходуется на образование калий-натриевого градиента. Зато когда они выключены (или их мощности недостает, чтобы удовлетворить многочисленных потребителей потенциала), калий-натриевый градиент, рассеиваясь, сам начинает генерировать протонный потенциал.

Так ведь это и есть буфер протонного потенциала, тот самый буфер, который так необходим для работы мембранных энергетических систем!

Схематично эту концепцию можно изобразить так:

Калий-натриевый градиент ↓ внешние энергетические ресурсы → протонный потенциал → работа.

Но если такая схема верна, то калий-натриевый градиент должен продлить работоспособность клетки в условиях, когда исчерпаны энергетические ресурсы.

А. Глаголев и И. Броун проверили справедливость этого вывода. Был взят мутант кишечной палочки, лишенный протонной АТФ-синтетазы. Для такого мутанта окисление субстратов кислородом служит единственным энергетическим ресурсом, пригодным, чтобы образовать протонный потенциал. Как было показано в свое время Дж. Адлером и его сотрудниками, мутант подвижен, пока в среде есть кислород.

Глаголев и Броун повторили опыт Адлера и убедились, что исчерпание запаса кислорода в растворе действительно останавливает бактерии, если они находятся в среде с КСl. В этих условиях калий-натриевый градиент отсутствует: калия много и в клетках и в среде, а натрия нет ни там, ни здесь.

А теперь давайте возьмем среду с NaCl. В таких условиях должны быть оба интересующих нас градиента: калиевый (калия много внутри и мало снаружи) и натриевый (натрия много снаружи и мало внутри). Гипотеза предсказывала, что в такой ситуации подвижность сохранится какое-то время и в бескислородных условиях, поскольку возможно превращение энергии:

калий-натриевый градиент → протонный потенциал → вращение флагеллы.

И в самом деле, бактерии двигались еще 15-20 минут после того, как измерительное устройство зарегистрировало нулевой уровень СЬ в среде.

Но особенно наглядным, как и следовало ожидать, оказался опыт с солелюбивыми бактериями, которые транспортируют очень большие количества ионов К + и Na + , чтобы создать калий-натриевый градиент. Такие бактерии быстро останавливались в темноте в бескислородных условиях, если в среде был КСl, и все еще двигались спустя девять (!) часов, если КСl был заменен на NaCl.

Эта величина - девять часов - интересна прежде всего как иллюстрация объема того резервуара энергии, который представляет собой калий-натриевый градиент у солелюбивых бактерий. Кроме того, она приобретает особый смысл, если вспомнить о том, что солелюбивые бактерии располагают бактериородопсином и, стало быть, способны к превращению энергии света в протонный потенциал. Ясно, что такое превращение возможно лишь в светлый период суток. А как быть ночью? Так вот оказывается, что энергии, запасенной днем в виде калий-натриевого градиента, хватает на всю ночь.

Утверждение, что калий-натриевый градиент играет роль буфера протонного потенциала, позволяет понять не только биологическую функцию этого градиента, но и причину, которая в течение многих лет препятствовала выяснению его значения для жизнедеятельности клетки. Мысль о буферной роли калий-натриевого градиента не могла родиться, прежде чем был открыт протонный потенциал и было доказано, что он служит конвертируемой формой энергии. Все эти годы проблема калия и натрия просто ждала своего часа.

Основная физиологическая функция натрия в организме человека - регуляция объема внеклеточной жидкости, таким образом определяя объем крови и кровяное давление. Эта функция непосредственно связана с метаболизмом натрия и жидкости. Кроме этого, натрий участвует в процессе образования костной ткани, проведении нервных импульсов и др.

В медицине, в случае возникновения разного рода нарушений электролитного баланса, с целью выяснения причин этого состояния, проводят анализы на определение концентрации натрия, а также мониторинг баланса жидкости (ее поступления и выведения).

В организме человека масса жидкости занимает примерно 60%, то есть, человек, весом 70 кг, содержит примерно 40 литров жидкости, из которой около 25 л содержится в клетках (внутриклеточная жидкость - КЖ) и 14 л находится за вне клеток (внеклеточная жидкость - ВнеКЖ). Из общего количества внеклеточной жидкости примерно 3,5 л занимает плазма крови (кровяная жидкость, находящаяся внутри сосудистой системы) и около 10,5 литров - интерстициальная жидкость (ИСЖ), заполняющая пространство в тканях между клетками (см рис 1)

Рисунок 1. Распределение жидкости в организме взрослого человека, вес которого 70 кг

Общее количество жидкости в организме и сохранение постоянного уровня ее распределение между компартментами помогают обеспечить полноценное функционирование всех органов и систем, что, несомненно, является залогом крепкого здоровья. Обмен воды между внутриклеточной жидкостью и внеклеточной жидкостью происходит через мембраны клеток. Осмолярность растворов жидкости с обеих сторон мембраны непосредственно влияют на этот обмен. При условии осмотического равновесия жидкость не будет перемещаться, то есть, ее объемы в компартментах не будут изменяться. У здорового человека осмолярность внутриклеточной жидкости и плазмы крови (внеклеточной жидкости) поддерживается на уровне примерно 80-295 мОсмоль/кг.

Роль натрия в регуляции объема внеклеточной жидкости

Осмолярность - сумма концентрации всех кинетических частиц в 1 литре раствора, то есть, зависит от общей концентрации растворенных ионов. В организме человека осмолярность определяют именно электролиты, поскольку в жидких средах (внутри- и внеклеточная жидкости) ионы находятся в относительно высоких концентрациях по сравнению с другими растворенными компонентами. На рисунке 2 продемонстрировано распределение электролитов между внутриклеточной и внеклеточной жидкостями.

Рисунок 2. Концентрация растворенных компонентов во вннутриклеточной и внеклеточной жидкостях

Важно отметить, что для одновалентных ионов (калий, натрий) мэкв/л = ммоль/л, а для двухвалентных, чтобы почить количество ммоль/л, мэкв следует разделить на 2.

В левой части рисунка (ВнеКЖ) показан состав плазмы крови, который очень схож по составу с интерстициальной жидкостью (кроме низкой концентрации белка и высокой концентрации хлоридов)

Можно сделать вывод, что концентрация натрия в плазме крови является определяющим показателем объема внеклеточной жидкости и, как следствие, объема крови.

Во внеклеточной жидкости много натрия и мало калия. Напротив, в клетках содержится мало натрия - основным внутриклеточным катионом является калий. Такая разница в концентрациях электролитов во внеклеточной и внутриклеточной жидкостях поддерживается путем механизма активного транспорта ионов при участии натриево-калиевого насоса (помпы) (см рис. 3).

Рисунок 3. Поддержание концентрации натрия и калия в КЖ и ВнеКЖ

Натрий-калиевый насос, локализованный на клеточных мембранах, представляет собой энергонезависимую систему, которая есть у клеток всех типов. Благодаря этой системе из клеток выводятся ионы натрия в обмен на ионы калия. Без подобной транспортной системы ионы калия и натрия пребывали в состоянии пассивного диффундирования сквозь клеточную мембрану, что в результате привело бы к ионному равновесию между внеклеточной и внутриклеточной жидкостями.

Высокая осмолярность внеклеточной жидкости обеспечивается благодаря активному транспорту ионов натрия из клетки, что обеспечивает их высокое содержание во внеклеточной жидкости. Учитывая тот факт, что осмолярность влияет на распределение жидкости между ВнеКЖ и КЖ, следовательно, объем внеклеточной жидкости непосредственно зависит от концентрации натрия.

РЕГУЛЯЦИЯ ВОДНОГО БАЛАНСА

Поступление жидкости в организм человека должно быть адекватно ее выведению, в противном случае может возникнуть гипергидратация или дегидратация. Чтобы произошла экскреция (выведение) токсических веществ (ядовитых веществ, образующихся в организме в процессе метаболизма (обмена веществ)), почки должны ежедневно выделять минимум 500 мл мочи. К этому количеству нужно добавить 400 мл жидкости, которая ежедневно выводится через легкие в процессе дыхания, 500 мл - выводится через кожу, а также 100 мл - с фекальными массами. В результате, организм человека ежедневно теряет в среднем 1500 мл (1,5 л) жидкости.

Отметим, что ежедневно в организме человека в процессе метаболизма (как результат побочного продукта обмена веществ) синтезируется примерно 400 мл воды. Таким образом, чтобы поддерживать минимальный уровень водного баланса, в организм должно поступить минимум 1100 мл воды в сутки. В действительности суточный объем поступающей жидкости часто превышает указанный минимальный уровень, при этом почки, в процессе регуляции водного баланса, отлично справляются с выведением лишней жидкости.

У большинства людей средний объем суточной мочи составляет примерно 1200-1500 мл. При необходимости почки могут образовывать значительно большее количество мочи.

Осмолярность плазмы крови связана с поступлением жидкости в организм и процессом образования и выведения мочи. Например, в случае, если потеря жидкости адекватно не восполняется, объем внеклеточной жидкости снижается, а осмолярность повышается, что приводит к увеличению поступающей жидкости из клеток организма во внеклеточную жидкость, тем самым восстанавливая ее осмолярность и объем до необходимого уровня. Тем не менее, подобное внутреннее распределение жидкости эффективно только на ограниченный промежуток времени, поскольку этот процесс приводит к дегидрадации (обезвоживанию) клеток, в результате организм нуждается в поступлении из вне большего количества жидкости.

На рисунке 4 схематически представлен физиологический ответ на дефицит жидкости в организме.

Рисунок 4. Поддержание нормального водного баланса в организме регулируется гипоталамо-гипофизарной системой, чувством жажды, адекватного синтеза антидиуретического гормона и полноценного функционирования почек

При дефиците жидкости в организме, высокоосмолярная плазма крови протекает через гипоталамус, в котором осморецепторы (специальные клетки) анализируют состояние плазмы и дают сигнал к запуску механизма снижения осмолярности путем стимуляции секреции в гипофизе антидиуретического гормона (АДГ) и возникновения чувства жажды. При жажде человек старается компенсировать недостаток жидкости из вне, потребляя напитки или воду. Антидиуретический гормон оказывает влияние на функцию почек, тем самым препятствуя выведению жидкости из организма. АДГ способствует повышению реабсорбции (обратного всасывания) жидкости из собирательных трубочек и дистальных канальцев почек, в результате чего продуцируется относительно небольшое количество мочи более высокой концентрации. Несмотря на такие изменения в плазме крови, современные диагностические анализаторы позволяют оценить степень гемолиза и измерять реальный уровень содержания калия в плазме гемолизированных образцов крови.

При поступлении в организм большого количества жидкости, осмолярность внеклеточной жидкости снижается. При этом не происходит стимуляция осморецепторов в гипоталамусе - у человека не возникает чувство жажды и не повышается уровень антидиуретического гормона. С целью предотвращения чрезмерной водной нагрузки, в почках образуется большое количество разбавленной мочи.

Отметим, что ежедневно в желудочно-кишечный тракт поступает примерно 8000 мл (8 литров) жидкости в виде желудочного, кишечного и панкреатических соков, желчи, а также слюны. В нормальном состоянии примерно 99% этой жидкости реабсорбируется и только 100 мл выходит из организма с фекальными массами. Тем не менее нарушение функции сохранения воды, которая содержится в этих секретах, может привести к водному дисбалансу, что вызовет серьезные нарушения состояния всего организма.

Еще раз обратим внимание на факторы, влияющие на нормальную регуляцию водного баланса в организме человека:

  • Чувство жажды (для проявления жажды человек должен находиться в сознании)
  • Полноценное функционирование гипофиза и гипоталамуса
  • Полноценное функционирование почек
  • Полноценное функционирование желудочно-кишечного тракта

РЕГУЛЯЦИЯ БАЛАНСА НАТРИЯ

Для нормального функционирования и здоровья организма поддержка натриевого баланса имеет такое же значение, как и поддержка водного баланса. В нормальном состоянии организм взрослого человека содержит примерно 3000 ммоль натрия. Большая часть натрия содержится во внеклеточной жидкости: плазме крови и интерстициальной жидкости (концентрация натрия в них около 140 ммоль/л).

Ежедневно потери натрия составляют минимум 10 ммоль/л. Чтобы поддерживать в организме нормальный баланс, эти потери должны компенсироваться (восполняться). С питанием люди получают значительно больше натрия, чем необходимо организму для компенсации (с продуктами питания, как правило в виде соленых приправ, человек ежедневно получает в среднем 100-200 ммоль натрия). Тем не менее, несмотря на широкую вариабельность поступления натрия в организм, почечная регуляция обеспечивает выведение его излишков с мочой, тем самым поддерживая физиологический баланс.

Процесс экскреции (выведения) натрия через почки зависит непосредственно от СКФ (скорости клубочковой фильтрации). Высокая скорость клубочковой фильтрации повышает количество выведения натрия в организме, а низкая скорость СКФ - задерживает его. Примерно 95-99% натрия, проходящего процесс фильтрации в почечных клубочках, активно реабсорбируется по мере прохождения мочи через проксимальные извитые канальцы. К моменту попадания ультрафильтрата в дистальный извитые канальцы, количество натрия, уже отфильтрованного в почечных клубочках, составляет 1-5%. Будет ли оставшийся натрий выведен с мочой или реабсорбируется в кровь, зависит непосредственно от концентрации в крови гормона надпочечников - альдостерона.

Альдостерон усиливает реабсорбцию натрия в обмен на ионы водорода или калия, тем самым оказывая влияние на клетки дистальных канальцев почек. То есть, при условии высокого содержания альдостерона в крови, большая часть остатков натрия реабсорбируется; при низкой концентрации - натрий выводится с мочой в больших количествах.

Рисунок 5.

Контролирует процесс выработки альдостерона (см рисунок 5). Ренин - фермент, который продуцируется почками в клетках юкстагломерулярного аппарата в ответ на снижение кровотока через почечные клубочки. Поскольку скорость почечного кровотока, как и кровотока через другие органы, зависит от объема крови, следовательно, и от концентрации натрия в крови, секреция ренина в почках повышается в случае снижения уровня натрия в плазме.

Благодаря ренину происходит ферментативное расщепление белка, также известного как рениновый субстрат . Одним из продуктов этого расщепления является ангиотензин I - пептид, содержащий 10 аминокислот.

Еще один фермент - АПФ (ангиотензинпревращающий фермент) , который синтезируется в основном в легких. В процессе метаболизма АПФ отделяет от ангиотензина I две аминокислоты, что приводит к образованию октопептида - гормона ангиотензина II.

Ангиотензин II обладает очень важными для организма свойствами:

  • Вазоконстрикция - сужение кровеносных сосудов, что способствует повышению давления крови и восстанавливает нормальный почечный кровоток
  • Стимулирует выработку альдостерона в клетках коры надпочечников, тем самым активируя реабсорбцию натрия, что способствует восстановлению нормального кровотока через почки и общего объема крови в организме.

При повышении объема крови и кровяного давления клетками сердца секретируется гормон, являющийся антагонистом альдостерона - ANP (предсердный натрийуретический пептид , или ПНП). ПНП способствует снижению реабсорбции натрия в дистальных канальцах почек, тем самым усиливает его выведение с мочой. То есть, система «обратной связи» обеспечивает четкую регуляцию баланса натрия в организме.

Данные специалистов говорят, что в организм человека через желудочно-кишечный тракт каждый день поступает примерно 1500 ммоль натрия. Примерно 10 ммоль натрия, который экскретируется с фекальными массами, реабсорбируется. В случае нарушения функций желудочно-кишечного тракта, количество реабсорбируемого натрия снижается, что приводит к его дефициту в организме. При нарушенном механизме почечной компенсации, начинают проявляться признаки этого дефицита.

Поддержание нормального баланса натрия в организме зависит от 3-х основных факторов:

  • Функции почек
  • Секреции альдостерона
  • Функционирования желудочно-кишечного тракта

КАЛИЙ

Калий участвует в проведении нервных импульсов, процессе сокращения мускулатуры, обеспечивает действие многих ферментов. В организме человека содержится в среднем 3000 ммоль калия, большая часть которого содержится в клетках. Концентрация калия в плазме крови составляет примерно 0,4%. Несмотря на то, что его концентрацию в крови можно измерять, результат анализа не будет объективно отражать общее содержание калия в организме. Тем не менее, для поддержания общего баланса калия, необходимо сохранять нужный уровень концентрации этого элемента в плазме крови.

Регуляция баланса калия

Организм ежедневно теряет с калом, мочой и потом минимум 40 ммоль калия. Поддержание необходимого калиевого баланса требует восполнения этих потерь. Рацион питания, который содержит овощи, фрукты, мясо и хлеб, обеспечивает примерно 100 ммоль калия в день. чтобы обеспечить необходимый баланс, излишки калия выводятся с мочой. Процесс фильтрации калия, как и натрия, происходит в почечных клубочках (как правило он реабсорбируется в проксимальной (начальной) части почечных канальцев. В собирательных клубочках и дистальных отделах канальцев происходит тонкая регуляция (калий может реабсорбироваться или секретироваться в обмен на ионы натрия).

Ренин-ангиотензинальдостероновая система регулирует натрий-калиевый обмен, а точнее - стимулирует его (альдостерон запускает реабсорбцию натрия и процесс выведения калия с мочой).

Кроме этого, количество выводимого с мочой калия определяется функцией почек в регуляции кислотно-щелочного баланса (pH) крови в физиологических пределах нормы. Например, одним из механизмов предотвращения окисления крови является выведение из организма с мочой избытка ионов водорода (это происходит путем обмена ионов водорода на ионы натрия в дистальных почечных канальцах). Таким образом, при ацидозе меньшее количество натрия может обмениваться на калий, в результате почки выводят меньше калия. Существуют и другие пути взаимодействия между кислотно-основным состоянием и калием.

В нормальном состоянии примерно 60 ммоль калия выделяется в желудочно-кишечный тракт, где большая его часть реабсорбируется (с фекальными массами организм теряет около 10 ммоль калия). В случае нарушения функций желудочно-кишечного тракта, механизм реабсорбции нарушается, что может привести к дефициту калия.

Транспорт калия через клеточные мембраны

Низкая концентрация калия во внеклеточной жидкости и высокая - во внутриклеточной жидкости регулируется с помощью натрий-калиевой помпы. Ингибирование (торможение) или стимуляция (усиление) этого механизма влияет на концентрацию калия в плазме крови, так как происходит изменение соотношение концентраций во внеклеточной и внутриклеточной жидкостях. Отметим, что с ионами калия при прохождении через клеточные мембраны конкурируют ионы водорода, то есть, уровень калия в плазме крови оказывает влияние на кислотно-основной баланс.

Значительное снижение или увеличение концентрации калия в плазме крови вовсе не указывает не дефицит или избыток этого элемента в организме в целом - это может указывать о нарушении необходимого баланса вне- и внутриклеточного калия.

Регуляция концентрации калия в плазме крови происходит за счет следующих факторов:

  • Поступление калия с пищей
  • Функции почек
  • Функции желудочно-кишечного тракта
  • Выработки альдостерона
  • Кислотно-щелочного баланса
  • Натриево-калиевой помпы

Выполнение нейроном своих основных функций – генерации, проведения и передачи нервного импульса становится возможно в первую очередь потому, что концентрация ряда ионов внутри и вне клетки существенно различается. Наибольшее значение здесь имеют ионы K+, Na+, Ca2+, Cl-. Калия в клетке в 30-40 раз больше, чем снаружи, а натрия примерно в 10 раз меньше. Кроме того, в клетке гораздо меньше, чем в межклеточной среде, ионов хлора и свободного кальция.

Разность концентраций натрия и калия создается специальным биохимическим механизмом, называемым натрий-калиевым насосом . Он представляет собой белковую молекулу, встроенную в мембрану нейрона (рис. 6) и осуществляющую активный транспорт ионов. Используя энергию АТФ (аденозинтрифосфорной кислоты), такой насос обменивает натрий на калий в пропорции 3: 2. Для переноса трех ионов натрия из клетки в окружающую среду и двух ионов калия в обратном направлении (т.е. против градиента концентрации) требуется энергия одной молекулы АТФ.

При созревании нейронов происходит встраивание в их мембрану натрий-калиевых насосов (на 1 мкм2 может быть расположено до 200 таких молекул), после чего начинается накачка в нервную клетку ионов калия и вывод из нее ионов натрия. В результате концентрация ионов калия в клетке возрастает, а натрия уменьшается. Скорость этого процесса может быть очень большой: до 600 ионов Nа+ в секунду. В реальных нейронах она определяется, прежде всего, доступностью внутриклеточного Nа+ и резко возрастает при его проникновении извне. В отсутствии любого из двух типов ионов работа насоса останавливается, поскольку она может протекать только как процесс обмена внутриклеточного Nа+ на внеклеточный K+.

Сходные системы переноса существуют и для ионов Cl- и Ca2+. При этом ионы хлора выводятся из цитоплазмы в межклеточную среду, и ионы кальция обычно переносятся внутрь клеточных органоидов – митохондрий и каналов эндоплазматической сети.

Для понимания процессов, происходящих в нейроне, необходимо знать, что в мембране клетки есть ионные каналы, количество которых задано генетически. Ионный канал – это отверстие в особой белковой молекуле, встроенной в мембрану. Белок может менять свою конформацию (пространственную конфигурацию), в результате чего канал находится в открытом или закрытом состоянии. Существует три основных типа таких каналов:

— постоянно открытые;

— потенциалзависимые (вольтзависимые, электрочувствительные) — канал открывается и закрывается в зависимости от трансмембранной разности потенциалов, т.е. разности потенциалов между наружной и внутренней поверхностями цитоплазматической мембраны;

— хемозависимые (лигандзависимые, хемочувствительные) — канал открывается в зависимости от воздействия на него того или иного вещества, специфичного для каждого канала.

Для изучения электрических процессов в нервной клетке применяется микроэлектродная техника. Микроэлектроды позволяют регистрировать электрические процессы в одном отдельно взятом нейроне или нервном волокне. Обычно это стеклянные капилляры с очень тонким кончиком диаметром меньше 1 мкм, заполненные раствором, проводящим электрический ток (например, хлористым калием).

Если установить два электрода на поверхности клетки, то между ними не регистрируется никакой разности потенциалов. Но если одним из электродов проколоть цитоплазматическую мембрану нейрона (т.е. кончик электрода окажется во внутренней среде), вольтметр зарегистрирует скачок потенциала примерно до -70 мВ (рис. 7). Такой потенциал назвали мембранным потенциалом. Его можно зарегистрировать не только у нейронов, но и в менее выраженной форме у других клеток организма. Но только в нервных, мышечных и железистых клетках мембранный потенциал может изменяться в ответ на действие раздражителя. В этом случае мембранный потенциал клетки, на которую не действуют никаким раздражителем, называют потенциалом покоя (ПП). В разных нервных клетках величина ПП отличается. Она колеблется в пределах от -50 до -100 мВ. За счет чего возникает этот ПП?

Исходное (до развития ПП) состояние нейрона можно охарактеризовать как лишенное внутреннего заряда, т.е. количество катионов и анионов в цитоплазме клетки равноза счет присутствия крупных органических анионов, для которых мембрана нейрона непроницаема. Реально такая картина наблюдается на ранних этапах эмбрионального развития нервной ткани. Затем по мере ее созревания включаются гены, запускающие синтез постоянно открытых K+-каналов . После их встраивания в мембрану ионы K+ получают возможность за счет диффузии свободно выходить из клетки (где их много) в межклеточную среду (где их гораздо меньше).

Но это не приводит к уравновешиванию концентраций калия внутри и вне клетки, т.к. выход катионов ведет к тому, что в клетке остается все больше нескомпенсированных отрицательных зарядов. Это вызывает образование электрического потенциала, препятствующего выходу новых положительно заряженных ионов. В результате выход калия продолжается до тех пор, пока не уравновесятся сила концентрационного давления калия, за счет которой он выходит из клетки, и действие электрического поля, препятствующее этому. В итоге между наружной и внутренней средой клетки возникает разность потенциалов, или равновесный калиевый потенциал, который описывается уравнением Нернста :

ЕK = (RT / F) (ln [К+]о / [К+ ]i),

где R – газовая постоянная, T – абсолютная температура, F – число Фарадея, [К+]o – концентрация ионов калия в наружном растворе, [К+ ]i – концентрация ионов калия в клетке.

Уравнение подтверждает зависимость, которую можно вывести даже путем логических рассуждений – чем больше разность концентраций ионов калия в наружной и внутренней среде, тем больше (по абсолютной величине) ПП.

Классические исследования ПП проводили на гигантских аксонах кальмара. Их диаметр составляет около 0,5 мм, поэтому все содержимое аксона (аксоплазму), можно без особых проблем удалить и заполнить аксон раствором калия, концентрация которого соответствует его внутриклеточной концентрации. Сам аксон при этом помещали в раствор калия с концентрацией, соответствующей межклеточной среде. После этого регистрировали ПП, который оказался равным -75 мВ. Равновесный калиевый потенциал, рассчитанный по уравнению Нернста для этого случая, оказался очень близок к полученному в эксперименте.

Но ПП в аксоне кальмара, заполненном настоящей аксоплазмой, равен приблизительно -60 мВ. Откуда же возникает разница в 15 мВ? Оказалось, что в создании ПП участвуют не только ионы калия, но и ионы натрия. Дело в том, что кроме калиевых каналов в мембрану нейрона встроены и постоянно открытые натриевые каналы . Их гораздо меньше, чем калиевых, однако мембрана все же пропускает в клетку небольшое количество ионов Na+, в связи с чем у большинства нейронов ПП составляет –60-(-65) мВ. Ток натрия также пропорционален разности его концентраций внутри и снаружи клетки – поэтому чем меньше эта разность, тем больше по абсолютному значению ПП. Зависит ток натрия и от самого ПП. Кроме того, через мембрану диффундирует очень небольшое количество ионов Cl-. Поэтому при расчете реального ПП уравнение Нернста дополняют данными о концентрациях ионов натрия и хлора внутри и вне клетки. В таком случае расчетные показатели оказываются очень близки к экспериментальным, что подтверждает правильность объяснения происхождения ПП диффузией ионов через мембрану нейрона.

Таким образом, конечный уровень потенциала покоя определяется взаимодействием большого числа факторов, основными из которых являются токи K+, Nа+ и деятельность натрий-калиевого насоса. Конечная величина ПП является результатом динамического равновесия этих процессов. Воздействуя на любой из них, можно смещать уровень ПП и, соответственно, уровень возбудимости нервной клетки.

В результате описанных выше событий мембрана постоянно находится в состоянии поляризации – ее внутренняя сторона заряжена отрицательно по отношению к внешней. Процесс уменьшения разности потенциалов (т.е. уменьшения ПП по абсолютной величине) называется деполяризацией, а увеличения ее (увеличения ПП по абсолютной величине) — гиперполяризацией.

Дата публикования: 2015-10-09; Прочитано: 361 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…

2–1. Мембранный потенциал покоя – это:

1) разность потенциалов между наружной и внутренней поверхностями клеточной мембраны в состоянии функционального покоя *

2) характерный признак только клеток возбудимых тканей

3) быстрое колебание заряда мембраны клетки амплитудой 90-120 мВ

4) разность потенциалов между возбужденным и невозбужденным участками мембраны

5) разность потенциалов между поврежденным и неповрежденным участками мембраны

2–2. В состоянии физиологического покоя внутренняя поверхность мембраны возбудимой клетки по отношению к наружной заряжена:

1) положительно

2) так же как наружная поверхность мембраны

3) отрицательно*

4) не имеет заряда

5) нет правильного ответа

2–3. Сдвиг в позитивную сторону (уменьшение) мембранного потенциала покоя при действии раздражителя называется:

1) гиперполяризацией

2) реполяризацией

3) экзальтацией

4) деполяризацией*

5) статической поляризацией

2–4. Сдвиг в негативную сторону (увеличение) мембранного потенциала покоя называется:

1) деполяризацией

2) реполяризацией

3) гиперполяризацией*

4) экзальтацией

5) реверсией

2–5. Нисходящая фаза потенциала действия (реполяризация) связана с повышением проницаемости мембраны для ионов:

2) кальция

2–6. Внутри клетки по сравнению с межклеточной жидкостью выше концентрация ионов:

3) кальция

2–7. Увеличение калиевого тока во время развития потенциала действия вызывает:

1) быструю реполяризацию мембраны*

2) деполяризацию мембраны

3) реверсию мембранного потенциала

4) следовую деполяризацию

5) местную деполяризацию

2–8. При полной блокаде быстрых натриевых каналов клеточной мембраны наблюдается:

1) сниженная возбудимость

2) уменьшение амплитуды потенциала действия

3) абсолютная рефрактерность*

4) экзальтация

5) следовая деполяризация

2–9. Отрицательный заряд на внутренней стороне клеточной мембраны формируется в результате диффузии:

1) К+ из клетки и электрогенной функции K-Na-насоса *

2) Na+ в клетку

3) С1– из клетки

4) Са2+ в клетку

5) нет правильного ответа

2–10. Величина потенциала покоя близка к значению равновесного потенциала для иона:

3) кальция

2–11. Восходящая фаза потенциала действия связана с повышением проницаемости для ионов:

2) нет правильного ответа

3) натрия*

2–12. Укажите функциональную роль мембранного потенциала покоя:

1) его электрическое поле влияет на состояние белков-каналов и ферментов мембраны*

2) характеризует повышение возбудимости клетки

3) является основной единицей кодирования информации в нервной системе

4) обеспечивает работу мембранных насосов

5) характеризует снижение возбудимости клетки

2–13. Способность клеток отвечать на действие раздражителей специфической реакцией, характеризующейся быстрой, обратимой деполяризацией мембраны и изменением метаболизма, носит название:

1) раздражимость

2) возбудимость*

3) лабильность

4) проводимость

5) автоматия

2–14. Биологические мембраны, участвуя в изменении внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, выполняет функцию:

1) барьерную

2) рецепторно-регуляторную*

3) транспортную

4) дифференциации клеток

2–15. Минимальная сила раздражителя, необходимая и достаточная для возникновения ответной реакции, называется:

1) пороговой*

2) сверхпороговой

3) субмаксимальной

4) подпороговой

5) максимальной

2–16. При увеличении порога раздражения возбудимость клетки:

1) увеличилась

2) уменьшилась*

3) не изменилась

4) всё верно

5) нет правильного ответа

2–17. Биологические мембраны, участвуя в преобразовании внешних стимулов неэлектрической и электрической природы в биоэлектрические сигналы, выполняют преимущественно функцию:

1) барьерную

2) регуляторную

3) дифференциации клеток

4) транспортную

5) генерации потенциала действия*

2–18. Потенциал действия – это:

1) стабильный потенциал, который устанавливается на мембране при равновесии двух сил: диффузионной и электростатической

2) потенциал между наружной и внутренней поверхностями клетки в состоянии функционального покоя

3) быстрое, активно распространяющееся, фазное колебание мембранного потенциала, сопровождающееся, как правило, перезарядкой мембраны*

4) небольшое изменение мембранного потенциала при действии подпорогового раздражителя

5) длительная, застойная деполяризация мембраны

2–19. Проницаемость мембраны для Na+ в фазе деполяризации потенциала действия:

1) резко увеличивается и появляется мощный входящий в клетку натриевый ток*

2) резко уменьшается и появляется мощный выходящий из клетки натриевый ток

3) существенно не меняется

4) всё верно

5) нет правильного ответа

2–20. Биологические мембраны, участвуя в высвобождении нейромедиаторов в синаптических окончаниях, выполняют преимущественно функцию:

1) барьерную

2) регуляторную

3) межклеточного взаимодействия*

4) рецепторную

5) генерации потенциала действия

2–21. Молекулярный механизм, обеспечивающий выведение из цитоплазмы ионов натрия и введение в цитоплазму ионов калия, называется:

1) потенциалзависимый натриевый канал

2) неспецифический натрий-калиевый канал

3) хемозависимый натриевый канал

4) натриево-калиевый насос*

5) канал утечки

2–22. Система движения ионов через мембрану по градиенту концентрации, не требующая непосредственной затраты энергии, называется:

1) пиноцитозом

2) пассивным транспортом*

3) активным транспортом

4) персорбцией

5) экзоцитозом

2–23. Уровень потенциала мембраны, при котором возникает потенциал действия, называется:

1) мембранным потенциалом покоя

2) критическим уровнем деполяризации*

3) следовой гиперполяризацией

4) нулевым уровнем

5) следовой деполяризацией

2–24. При повышении концентрации К+ во внеклеточной среде с мембранным потенциалом покоя в возбудимой клетке произойдет:

1) деполяризация*

2) гиперполяризация

3) трансмембранная разность потенциалов не изменится

4) стабилизация трансмембранной разности потенциалов

5) нет правильного ответа

2–25. Наиболее существенным изменением при воздействии блокатором быстрых натриевых каналов будет:

1) деполяризация (уменьшение потенциала покоя)

2) гиперполяризация (увеличение потенциала покоя)

3) уменьшение крутизны фазы деполяризации потенциала действия*

4) замедление фазы реполяризации потенциала действия

5) нет правильного ответа

3. ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ РАЗДРАЖЕНИЯ

ВОЗБУДИМЫХ ТКАНЕЙ

3–1. Закон, согласно которому при увеличении силы раздражителя ответная реакция постепенно увеличивается до достижения максимума, называется:

1) «все или ничего»

2) силы–длительности

3) аккомодации

4) силы (силовых отношений)*

5) полярным

3–2. Закон, согласно которому возбудимая структура на пороговые и сверхпороговые раздражения отвечает максимально возможным ответом, называется:

2) «все или ничего»*

3) силы-длительности

4) аккомодации

5) полярным

3–3. Минимальное время, в течение которого ток, равный удвоенной реобазе (удвоенной пороговой силы), вызывает возбуждение, называется:

1) полезным временем

2) аккомодацией

3) адаптацией

4) хронаксией*

5) лабильностью

3–4. Закону силы подчиняется структура:

1) сердечная мышца

2) одиночное нервное волокно

3) одиночное мышечное волокно

4) целая скелетная мышца*

5) одиночная нервная клетка

Закону «Все или ничего» подчиняется структура:

1) целая скелетная мышца

2) нервный ствол

3) сердечная мышца*

4) гладкая мышца

5) нервный центр

3–6. Приспособление ткани к медленно нарастающему по силе раздражителю называется:

1) лабильностью

2) функциональной мобильностью

3) гиперполяризацией

4) аккомодацией*

5) торможением

3–7. Для парадоксальной фазы парабиоза характерно:

1) уменьшение ответной реакции при увеличении силы раздражителя*

2) уменьшение ответной реакции при уменьшении силы раздражителя

3) увеличение ответной реакции при увеличении силы раздражителя

4) одинаковая ответная реакция при увеличении силы раздражителя

5) отсутствие реакции на любые по силе раздражители

3–8. Порог раздражения является показателем:

1) возбудимости*

2) сократимости

3) лабильности

4) проводимости

5) автоматии

Дата публикования: 2015-04-08; Прочитано: 2728 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.009 с)…

РОЛЬ АКТИВНОГО ТРАНСПОРТА ИОНОВ В ФОРМИРОВАНИИ МЕМБРАННОГО ПОТЕНЦИАЛА

Одним из преимуществ «идеальной» мембраны, пропускающей какой-либо один ион, является поддержание сколь угодно долго мембранного потенциала без затрат энергии при условии, если проникающий ион исходно распределен неравномерно по обе стороны мембраны. Вместе с тем мембрана живых клеток прони-цаема в той или иной степени для всех неорганических ионов, на-ходящихся в окружающем клетку растворе. Поэтому клетки долж-

ны как-то поддерживать внутриклеточную концентрацию ионов на определенном уровне. Достаточно показательны в этом отно-шении ионы натрия, на примере проницаемости которых в пре-дыдущем разделе разбиралось отклонение мембранного потенци-ала мышцы от равновесного калиевого потенциала. Согласно из-меренным концентрациям ионов натрия снаружи и внутри мы-шечной клетки равновесный потенциал, рассчитанный по уравнению Нернста для этих ионов, будет около 60 мВ, причем со знаком «плюс» внутри клетки. Мембранный потенциал, рассчи-танный по уравнению Голдмана и измеренный с помощью микро-электродов, равен 90 мВ со знаком «минус» внутри клетки. Таким образом, отклонение его от равновесного потенциала для ионов натрия будет 150 мВ. Под действием такого высокого потенциала даже при низкой проницаемости ионы натрия будут входить через мембрану и накапливаться внутри клетки, что соответственно бу-дет сопровождаться выходом ионов калия из нее. В результате это-го процесса внутри- и внеклеточные концентрации ионов через некоторое время выравняются.

На самом же деле в живой клетке этого не происходит, поскольку постоянно осуществляется удаление ионов натрия из клетки с помощью так называемого ионного насоса. Пред-положение о существовании ионного насоса было выдвинуто Р. Дином в 40-е годы XX в. и явилось чрезвычайно важным дополнением к мембранной теории формирования потенциала покоя в живых клетках. Экспериментально показано, что ак-тивное «выкачивание» Na+ из клетки идет с обязательным «за-качиванием» ионов калия внутрь клетки (рис. 2.8). Поскольку проницаемость мембраны для ионов натрия мала, то их вход из наружной среды в клетку будет происходить медленно, поэтому

Низкая концентрация К+ Высокая концентрация Na++

насос эффективно будет поддерживать низкую концентрацию ионов натрия в клетке. Проницаемость мембраны для ионов ка-лия в покое достаточно высокая, и они легко диффундируют через мембрану.

На поддержание высокой концентрации ионов калия не надо тратить энергии, она сохраняется благодаря возникаю-щей трансмембранной разности потенциалов, механизмы воз-никновения которой подробно изложены в предыдущих раз-делах. Перенос ионов насосом требует затрат метаболической энергии клетки. Источником энергии этого процесса является энергия, запасенная в макроэргических связях молекул АТФ. Энергия освобождается за счет гидролиза АТФ с помощью фер-мента аденозинтрифосфатазы. Полагают, что этот же фермент непосредственно осуществляет и перенос ионов. В соответст-вии со строением клеточной мембраны АТФаза является од-ним из интегральных белков, встроенных в липидный бислой. Особенностью фермента-переносчика является его высокое срод-ство на внешней поверхности к ионам калия, а на внутрен-ней - к ионам натрия. Действие ингибиторов окислительных процессов (цианидов или азидов) на клетку, охлаждение клетки блокирует гидролиз АТФ, а также и активный перенос ионов натрия и калия. Ионы натрия постепенно поступают в клетку, а ионы калия выходят из нее, и по мере снижения отношения [К+]о/[К+],- потенциал покоя будет медленно снижаться до нуля. Мы обсуждали ситуацию, когда ионный насос выводит из внут-риклеточной среды один положительно заряженный ион на-трия и соответственно переносит из внеклеточного простран-ства один положительно заряженный ион калия (соотношение 1: 1). В этом случае говорят, что ионный насос является элект-ронейтральным.

Вместе с тем экспериментально было обнаружено,что в некото-рых нервных клетках ионный насос за один и тот же промежуток времени больше удаляет ионов натрия, чем закачивает ионов ка-лия (соотношение может быть 3:2). В таких случаях ионный на-сос является электрогенным, т.

Fiziologia_Otvety

е. он сам создает небольшой, но по-стоянный суммарный ток положительных зарядов из клетки и до-полнительно способствует созданию отрицательного потенциала внутри нее. Отметим, что создаваемый с помощью электрогенного насоса в покоящейся клетке дополнительный потенциал не пре-вышает нескольких милливольт.

Подытожим сведения о механизмах формирования мемб-ранного потенциала - потенциала покоя в клетке. Основной про-цесс, за счет которого создается большая часть потенциала с от-рицательным знаком на внутренней поверхности клеточной мембраны, - это возникновение электрического потенциала, за-держивающего пассивный выход ионов калия из клетки по сво-ему концентрационному градиенту через калиевые каналы - ин-


тегральные белки. Другие ионы (например, ионы натрия) участ-вуют в создании потенциала лишь в небольшой степени, посколь-ку проницаемость мембраны для них значительно ниже, чем для ионов калия, т. е. число открытых каналов для этих ионов в состо-янии покоя невелико. Чрезвычайно важным условием для поддер-жания потенциала покоя является наличие в клетке (в клеточной мембране) ионного насоса (интегрального белка), который обес-печивает концентрацию ионов натрия внутри клетки на низком уровне и тем самым создает предпосылки, чтобы главными потен-циалобразующими внутриклеточными ионами стали ионы калия. Небольшой вклад в потенциал покоя может вносить непосредст-венно и сам ионный насос, но при условии, что его работа в клет-ке электрогенна.

Концентрация ионов внутри и вне клетки

Итак, есть два факта, которые необходимо учесть, чтобы понять механизмы, поддерживающие мембранный потенциал покоя.

1 . Концентрация ионов калия в клетке значительно выше, чем во внеклеточной среде. 2 . Мембрана в покое избирательно проницаема для К+ , а для Nа+ проницаемость мембраны в покое незначительна. Если принять проницаемость для калия за 1, то проницаемость для натрия в покое составит лишь 0,04. Следовательно, существует постоянный поток ионов К+ из цитоплазмы по градиенту концентрации . Калиевый ток из цитоплазмы создает относительный дефицит положительных зарядов на внутренней поверхности, для анионов клеточная мембрана непроницаема в результате цитоплазма клетки оказывается заряженной отрицательно по отношению к окружающей клетку среде. Эта разность потенциалов между клеткой и внеклеточным пространством, поляризация клетки, называется мембранным потенциалом покоя (МПП).

Возникает вопрос: почему же ток ионов калия не продолжается до уравновешивания концентраций иона вне и внутри клетки? Следует вспомнить о том, это заряженная частица, следовательно, ее движение зависит и от заряда мембраны. Внутриклеточный отрицательный заряд, который создается благодаря току ионов калия из клетки, препятствует выходу из клетки новых ионов калия. Поток ионов калия прекращается, когда действие электрического поля компенсирует движение иона по градиенту концентрации. Следовательно, для данной разности концентраций ионов на мембране формируется так называемый РАВНОВЕСНЫЙ ПОТЕНЦИАЛ для калия. Этот потенциал (Ek) равен RT/nF *ln /, (n – валентность иона.) или

Ek=61,5 log/

Мембранный потенциал (МП) в большой степени зависит от равновесного потенциала калия, однако, часть ионов натрия все же проникает в покоящуюся клетку, так же, как и ионы хлора. Таким образом, отрицательный заряд, который имеет мембрана клетки, зависит от равновесных потенциалов натрия, калия и хлора и описывается уравнением Нернста. Наличие этого мембранного потенциала покоя чрезвычайно важно, потому, что именно он определяет способность клетки к возбуждению — специфическому ответу на раздражитель.

Возбуждение клетки

Возбуждение клетки (переход от покоя к активному состоянию) происходит при повышении проницаемости ионных каналов для натрия, а иногда и для кальция. Причиной изменения проницаемости может быть и изменение потенциала мембраны — активируются электровозбудимые каналы, и взаимодействие мембранных рецепторов с биологически активным веществом – рецептор — управляемые каналы, и механическое воздействие. В любом случае для развития возбуждения необходима начальная деполяризация — небольшое снижение отрицательного заряда мембраны, вызванная действием раздражителя. Раздражителем может быть любое изменение параметров внешней или внутренней среды организма: свет, температура, химические вещества (воздействие на вкусовые и обонятельные рецепторы), растяжение, давление. Натрий устремляется в клетку, возникает ионный ток и происходит снижение мембранного потенциала — деполяризация мембраны.

Таблица 4

Изменение мембранного потенциала при возбуждении клетки .

Обратите внимание на то, что вход натрия в клетку осуществляется по градиенту концентрации и по электрическому градиенту: концентрация натрия в клетке в 10 раз ниже, чем во внеклеточной среде и заряд по отношению к внеклеточному — отрицательный. Одновременно активируются и калиевые каналы, но натриевые (быстрые) активируются и инактивируются в течение 1 – 1,5 миллисекунд, а калиевые дольше.

Изменения мембранного потенциала принято изображать графически. На верхнем рисунке представлена начальная деполяризация мембраны — изменение потенциала в ответ на действие раздражителя. Для каждой возбудимой клетки существует особый уровень мембранного потенциала, при достижении которого резко изменяются свойства натриевых каналов. Этот потенциал назван критическим уровнем деполяризации (КУД ). При изменении мембранного потенциала до КУД открываются быстрые, потенциал зависимые натриевые каналы, поток ионов натрия устремляется в клетку. При переходе положительно заряженных ионов в клетку, в цитоплазме — увеличивается положительный заряд. В результате этого трансмембранная разность потенциалов уменьшается, значение МП снижается до 0, а затем, по мере дальнейшего поступления натрия в клетку происходит перезарядка мембраны и реверсия заряда (овершут)- теперь поверхность становится электроотрицательной по отношению к цитоплазме — мембрана ДЕПОЛЯРИЗОВАНА полностью – средний рисунок. Дальнейшего изменения заряда не происходит потому, что инактивируются натриевые каналы – больше натрий в клетку поступать не может, хотя градиент концентрации изменяется весьма незначительно. Если раздражитель обладает такой силой, что деполяризует мембрану до КУД, этот раздражитель называется пороговым, он вызывает возбуждение клетки. Точка реверса потенциала – это знак того, что вся гамма раздражителей любой модальности переведена в язык нервной системы — импульсы возбуждения. Импульсы, или потенциалы возбуждения называются потенциалами действия. Потенциал действия (ПД) – быстрое изменение мембранного потенциала в ответ на действия раздражителя пороговой силы. ПД имеет стандартные амплитуду и временные параметры, не зависящие от силы стимула — правило "ВСЕ ИЛИ НИЧЕГО". Следующий этап – восстановление мембранного потенциала покоя — реполяризация (нижний рисунок) в основном обусловлена активным ионным транспортом. Наиболее важен процесс активного транспорта — это работа Na/K — насоса, который выкачивает ионы натрия из клетки, одновременно закачивая ионы калия внутрь клетки. Восстановление мембранного потенциала происходит благодаря току ионов калия из клетки – калиевые каналы активируются и пропускают ионы калия до достижения равновесного калиевого потенциала. Это процесс важен потому, что до тех пор, пока не восстановлен МПП, клетка не способна воспринимать новый импульс возбуждения.

ГИПЕРПОЛЯРИЗАЦИЯ — кратковременное увеличение МП после его восстановления, которое обусловлено повышением проницаемости мембраны для ионов калия и хлора. Гиперполяризация бывает только после ПД и характерна далеко не для всех клеток. Попытаемся еще раз представить графически фазы потенциала действия и ионные процессы, лежащие в основе изменений потенциала мембраны (рис.

Потенциал покоя нейрона

9). На оси абсцисс отложим значения мембранного потенциала в милливольтах, на оси ординат – время в миллисекундах.

1. Деполяризация мембраны до КУД – могут открыться любые натриевые каналы, иногда кальциевые, и быстрые, и медленные, и потенциал-зависимые, и рецептор-управляемые. Это зависит от вида раздражителя и типа клеток

2. Быстрое поступление натрия в клетку — открываются быстрые, потенциал-зависимые натриевые каналы, и деполяризация достигает точки реверса потенциала – происходит перезарядка мембраны, знак заряда меняется на положительный.

3. Восстановление градиента концентрации по калию – работа насоса. Калиевые каналы активированы, калий переходит из клетки во внеклеточную среду – реполяризация, начинается восстановление МПП

4. Следовая деполяризация, или отрицательный следовой потенциал — мембрана еще деполяризована относительно МПП.

5. Следовая гиперполяризация. Калиевые каналы остаются открытыми и дополнительный ток калия гиперполяризует мембрану. После этого клетка возвращается к исходному уровню МПП. Длительность ПД составляет для разных клеток от 1 до 3-4 мс.

Рисунок 9 Фазы потенциала действия

Обратите внимание на три величины потенциала, важные и постоянные для каждой клетки ее электрические характеристики.

1. МПП — электроотрицательность мембраны клетки в покое, обеспечивающая способность к возбуждению — возбудимость. На рисунке МПП = -90 мв.

2. КУД — критический уровень деполяризации (или порога генерации мембранного потенциала действия) — это такая величина мембранного потенциала, при достижении которой открываются быстрые , потенциал зависимые натриевые каналы и происходит перезарядка мембраны за счет поступления в клетку положительных ионов натрия. Чем выше электроотрицательность мембраны, тем труднее деполяризовать ее до КУД, тем менее возбудима такая клетка.

3. Точка реверса потенциала (овершут) — такая величинаположительного мембранного потенциала, при которой положительно заряженные ионы уже не проникают в клетку — кратковременный равновесный натриевый потенциал. На рисунке + 30 мв. Суммарное изменение потенциала мембраны от –90 до +30 составит для данной клетки 120 мВ, эта величина и является потенциалом действия. Если этот потенциал возник в нейроне, он будет распространяться по нервному волокну, если в мышечных клетках – будет распространяться по мембране мышечного волокна и приведет к сокращению, в железистых к секреции – к действию клетки. Это и есть специфический ответ клетки на действие раздражителя, возбуждение.

При действии раздражителя подпороговой силы возникает неполная деполяризация — ЛОКАЛЬНЫЙ ОТВЕТ (ЛО).

Неполная, или частичная деполяризация – это такое изменение заряда мембраны, которое не достигает критического уровня деполяризации (КУД).

Рисунок 10. Изменение мембранного потенциала в ответ на действие раздражителя подпороговой силы — локальный ответ

Локальный ответ обладает, в основном, тем же механизмом, что и ПД, его восходящая фаза определяется входом ионов натрия, а нисходящая — выходом ионов калия.

Однако амплитуда ЛО пропорциональна силе подпорогового раздражения, а не стандартна, как у ПД.

Таблица 5

Нетрудно видеть, что в клетках имеются условия, при которых между клеткой и межклеточной средой должна возникать разность потенциалов:

1) мембраны клеток хорошо проницаемы для катионов (в первую очередь — калия), в то время как проницаемость мембран для анионов гораздо меньше;

2) концентрации большинства веществ в клетках и в межклеточной жидкости сильно различаются (сравните со сказанным на стр.

). Поэтому на мембранах клеток будет возникать двойной электрический слой ("минус" на внутренней стороне мембраны, "плюс" на наружной), и на мембране должна существовать постоянная разность потенциалов, которую и называют потенциалом покоя. Говорят, что мембрана в состоянии покоя поляризована.

Впервые гипотезу об аналогичной природе ПП клеток и диффузионногопотенциала Нернста высказал в 1896 г.

База знаний

студент Военно-медицинской академии Ю.В.Чаговец. Сейчас эта точка зрения подтверждена многочисленными экспериментальными данными. Правда, между измеренными значениями ПП и вычисленными по формуле (1) имеются некоторые расхождения, но ониобъясняются двумя очевидными причинами. Во-первых, в клетках находитсяне один катион, а много (K , Na , Ca , Mg и др.). Это можно учесть, заменив формулу Нернста (1) на более сложную формулу, выеденную Гольдманом:

Где рK — проницаемость мембраны для калия, рNa -то же для натрия, рCl — то же для хлора; [К + ] e — концентрация ионов калия вне клетки, [К + ] i — то же внутри клетки (аналогично для натрия и хлора); многоточием обозначены соответствующие члены для других ионов. Ионы хлора (и других анионов) идут в направлении, противоположном ионам калия и натрия, поэтому значки "е" и "i" для них поставлены в обратном порядке.

Расчёт по формуле Гольдмана даёт значительно лучшее совпадение с экспериментом, однако некоторые расхождения всё же остаются. Это объясняется тем, что что при выводе формулы (2) не рассматривалась работа активного транспорта. Учёт последнего позволяет добиться практически полного согласия с опытом.

19. Натриевые и калиевые каналы в мембране и их роль в биоэлектрогенезе. Воротный механизм. Особенности потенциалзависимых каналов. Механизм возникновения потенциала действия. Состояние каналов и характер ионных потоков в разные фазы ПД. Роль активного транспорта в биоэлектрогенезе. Критический мембранный потенциал. Закон «все или ничего» для возбудимых мембран. Рефрактерность.

Выяснилось, что селективный фильтр обладает «жесткой» структурой, то есть не изменяет свой просвет в разных усло-виях. Переходы канала из открытого состояния в закрытое и обратно связаны с работой не селективного фильтра, воротного механизма. Под воротными процессами, происходящими в той или иной части ионного канала, которая называется воротами, понимают всякие изменения конформации белковых молекул, образующих канал, в результате которых его пара может открываться или закрываться. Следовательно, воротами принято называть функциональные группы белковых молекул, ко-торые обеспечивают воротные процессы. Важно, что ворота приводятся в движение физиологическими стимулами, то есть такими, которые присутствуют в естественных условиях. Сре-ди физиологических стимулов особую роль играют сдвиги мембранного потенциала.

Существуют каналы, которые управляются разностью по-тенциалов на мембране, будучи открытыми при одних значе-ниях мембранного потенциала и закрытыми - при других. Та-кие каналы называются потенциалзависимыми. Именно с ни-ми связана генерация ПД. Ввиду их особой значимости все ионные каналы биомембран подразделяют на 2 типа: потенциалзависимые и потенциалнезависимые. Естественными сти-мулами, управляющими движением ворот в каналах второго типа служат не сдвиги мембранного потенциала, а другие фак-торы. Например, в химиочувствительных каналах роль управ-ляющего стимула принадлежит химическим веществам.

Существенным компонентом потенциалзависимого ионного канала является сенсор напряжения. Так называют группы белковых молекул, способные реагировать на изменения элек-трического поля. Пока нет конкретных сведений о том, что они собою представляют и как расположены, но понятно, что электрическое поле может взаимодействовать в физической среде только с зарядами (либо свободными, либо связанны-ми). Было предположение, что сенсором напряжения служит Са2+ (свободные заряды), так как изменения его содержания в межклеточной жидкости приводят к таким же последстви-ям, как и сдвиги мембранного потенциала. Например, десяти-кратное снижение концентрации ионов кальция в интерстиции эквивалентно деполяризации плазматической мембраны при-близительно на 15 мВ. Одн-ко в дальнейшем оказалось, что Са2+ необходим для работы сенсора напряжения, но сам не является им. ПД генерируется даже тогда, когда концентра-ция свободного кальция в межклеточной среде падает ниже 10~8 моль. Кроме того, содержание Са2+ в цитоплазме вооб-ще мало влияет на ионную проводимость плазмолеммы. Очевидно, сенсором напряжения служат связанные заря-ды - группы белковых молекул, обладающие большим дипольным моментом. Они погружены в липидный бислой, ко-торому свойственны довольно невысокая вязкость (30 - 100 сП) и низкая диэлектрическая проницаемость. К такому заключению привело изучение кинетических характеристик движения сенсора напряжения при сдвигах мем-бранного потенциала. Это движение представляет собой типичный ток смещения.

Современная функциональная модель натриевого потен-циалзависимого канала предусматривает существование в нем двух типов ворот, работающих в противофазе. Они отличаются инерционными свойствами. Более подвижные (легкие) на-званы m-воротами, более инерционные (тяжелые) - h – воротами. В покое h-ворота открыты, m – ворота закрыты, движение Na+ по каналу невозможно. При деполяризации плазмолеммы ворота обоих типов приходят в движе-ние, но в силу неодинаковой инерции m-ворота успевают

открыться раньше, чем закроются h-ворота. В этот миг натриевый канал открыт и Na+ устремляется по нему в клетку. Запаздывание движения h-ворот относительно m-ворот соответствует длительности деполяризационной фазы ПД. Когда же h-ворота закроются, поток Na+ сквозь мембрану прекратится и нач-нется реполяризация. Затем происходит возврат h — и m — ворот в исходное состояние. Потенциалзависимы натриевые каналы активируются (включаются) при быстрой (скачкообразной) деполяризаций плазматической мембраны. ,

ПД создается за счет более быстрой диффузии сквозь плазматическую мембрану ионов натрия по сравнению с анионами, образующими с ним соли в межклеточной среде. Следовательно, деполяризация связана с вхождением в цитоплазму катионов натрия. При развитии ПД в клетке не накапливается натрий. При возбуждении наблюдается входящий и выходящий потоки натрия. Возникновение ПД обусловлено не нарушением ионных концентраций в цитоплазме, а падением электрического сопротивления плазматической мембраны вследствие повышения ее проницаемости для натрия.

Как уже говорилось, под действием порогового и надпорогового раздражителей возбудимая мембрана генерирует ПД. Для этого процесса характерен закон «все или ничего. Он является антитетой градуальностия. Смысл закона состоит в том, что параметры ПД не зависят от интнетсивности раздражителя. Как только достигается КМП, изменения разности потенциалов на возбудимой мембране определяются только свойствами её потенциалзависимых ионных каналов, которые обеспечивают входящий ток. Среди них внешний стимул открывает только самые чувствительные. Другие открываются за счет предыдущих, уже независимо от раздражителя. Говорят о спантанном характере процесса вовлечения в трансмембранный перенос ионов всё новых потенциалзависимых ионных каналов. Поэтому амплитуда. Длительность, крутизна переднего и заднего фронтов ПД зависит только от ионных градиетнов на клеточной мембране и кинетических характеристик её каналов. Закон «всё или ничего» — характернейшее свойство одиночных клеток и волокон, обладающтх возбудимой мембраной. Большинству многоклеточных образований он не свойственен. Исключение составляют структуры, организованные по типу синцития.

Дата публикования: 2015-01-25; Прочитано: 421 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Любая живая клетка покрыта полупроницаемой мембраной, через которую осуществляется пассивное движение и активный избирательный транспорт положительно и отрицательно заряженных ионов. Благодаря этому переносу между наружной и внутренней поверхностью мембраны имеется разность электрических зарядов (потенциалов) – мембранный потенциал. Существует три отличающихся друг от друга проявления мембранного потенциала – мембранный потенциал покоя, местный потенциал , или локальный ответ , и потенциал действия .

Если на клетку не действуют внешние раздражители, то мембранный потенциал долго сохраняется постоянным. Мембранный потенциал такой покоящейся клетки называется мембранным потенциалом покоя. Для наружной поверхности мембраны клетки потенциал покоя всегда положителен, а для внутренней поверхности клеточной мембраны всегда отрицателен. Принято измерять потенциал покоя на внутренней поверхности мембраны, т.к. ионный состав цитоплазмы клетки более стабилен, чем межклеточной жидкости. Величина потенциала покоя относительно постоянна для каждого типа клеток. Для поперечнополосатых мышечных клеток она составляет от –50 до –90 мВ, а для нервных клеток от –50 до –80 мВ.

Причинами возникновения потенциала покоя являются разная концентрация катионов и анионов снаружи и внутри клетки, а также избирательная проницаемость для них клеточной мембраны. Цитоплазма покоящейся нервной и мышечной клетки содержит примерно в 30–50 раз больше катионов калия, в 5–15 раз меньше катионов натрия и в 10–50 раз меньше анионов хлора, чем внеклеточная жидкость.

В состоянии покоя практически все натриевые каналы мембраны клетки закрыты, а большинство калиевых каналов открыто. Всякий раз, когда ионы калия наталкиваются на открытый канал, они проходят через мембрану. Поскольку внутри клетки ионов калия гораздо больше, то осмотическая сила выталкивает их из клетки. Вышедшие катионы калия увеличивают положительный заряд на наружной поверхности клеточной мембраны. В результате выхода ионов калия из клетки должна была бы вскоре уравняться их концентрация внутри и вне клетки. Однако этому препятствует электрическая сила отталкивания положительных ионов калия от положительно заряженной наружной поверхности мембраны.

Чем больше становится величина положительного заряда на наружной поверхности мембраны, тем труднее ионам калия проходить из цитоплазмы через мембрану. Ионы калия будут выходить из клетки до тех пор, пока сила электрического отталкивания не станет равной силе осмотического давления К+. При таком уровне потенциала на мембране вход и выход ионов калия из клетки находятся в равновесии, поэтому электрический заряд на мембране в этот момент называется калиевым равновесным потенциалом . Для нейронов он равен от –80 до –90 мВ.

Поскольку в покоящейся клетке почти все натриевые каналы мембраны закрыты, то ионы Nа+ поступают в клетку по концентрационному градиенту в незначительном количестве. Они лишь в очень малой степени возмещают потерю положительного заряда внутренней средой клетки, вызванную выходом ионов калия, но не могут эту потерю существенно компенсировать. Поэтому проникновение в клетку (утечка) ионов натрия приводит лишь к незначительному снижению мембранного потенциала, вследствие чего мембранный потенциал покоя имеет несколько меньшую величину по сравнению с калиевым равновесным потенциалом.

Таким образом, выходящие из клетки катионы калия совместно с избытком катионов натрия во внеклеточной жидкости создают положительный потенциал на наружной поверхности мембраны покоящейся клетки.

В состоянии покоя плазматическая мембрана клетки хорошо проницаема для анионов хлора. Анионы хлора, которых больше во внеклеточной жидкости, диффундируют внутрь клетки и несут с собой отрицательный заряд. Полного уравнивания концентраций ионов хлора снаружи и внутри клетки не происходит, т.к. этому препятствует сила электрического взаимного отталкивания одноименных зарядов. Создается хлорный равновесный потенциал, при котором вход ионов хлора в клетку и их выход из нее находятся в равновесии.

Мембрана клетки практически непроницаема для крупных анионов органических кислот. Поэтому они остаются в цитоплазме и совместно с поступающими анионами хлора обеспечивают отрицательный потенциал на внутренней поверхности мембраны покоящейся нервной клетки.

Важнейшее значение мембранного потенциала покоя состоит в том, что он создает электрическое поле, которое воздействует на макромолекулы мембраны и придает их заряженным группам определенное положение в пространстве. Особенно важно то, что это электрическое поле обусловливает закрытое состояние активационных ворот натриевых каналов и открытое состояние их инактивационных ворот (рис. 61, А). Этим обеспечивается состояние покоя клетки и готовности ее к возбуждению. Даже относительно небольшое уменьшение мембранного потенциала покоя открывает активационные «ворота» натриевых каналов, что выводит клетку из состояния покоя и дает начало возбуждению.

· Формирование клеточного возбуждения обусловлено именно транспортом ионов. Билипидный слой клеточной мембраны непроницаем для ионов (Na, K, Cl), для их транспорта в клетку и из клетки предназначены ионные каналы - специальные интегральные белки, характеризуемые свойствами специфичность (проницаемость для конкретного иона, что связанно с размером его в гидратной оболочке) и регулируемость.

Можно привести следующую классификацию ионных каналов:

1. Нерегулируемые (всегда открыты)

2. Регулируемые

· Потенциалзависимые

· Лигандзависимые

· Терочувствительные

· Механочувствительные

Особый интерес в рассмотрении темы возбуждения представляют потенциал - зависимые ионные каналы (рис. 2).

Рис. 2.

Схема иллюстрирует потенциалзависимый канал в покое (1), в активированном (2) и инактивированном (3) состоянии, что определяется значением мембранного потенциала. Соответственно: 1- канал не функционирует, т.к. воротный механизм (предположительно - заряженная группа белковой молекулы, образующей канал) закрыт; 2- канал открыт (в результате уменьшения МП) и пропускает катионы (J); 3-канал не пропускает ионов ввиду изменения пространственного положения другой заряженной группы. Вещество (ЛВ, обозначено треугольником) может ускорять и облегчать инактивацию (4), блокировать открытый канал (5), облегчать активацию (6а) или затруднять инактивацию (6б).

Ионные каналы предназначены для регуляции пассивного транспорта ионов путём диффузии, идущего по градиенту концентрации (из области с большей концентрацией в область с меньшей). Однако имеет место также транспорт против градиента концентрации, идущий с затратами энергии с помощью мембранных белков - АТФаз. Данные белки дефосфорилируют молекулы АТФ и за счёт энергии, высвобождающейся при гидролизе макроэргических связей, переносят ионы через мембрану против градиента концентрации по принципу “помпы” для откачки воды. По своей сути данный путь транспорта противопоставляется пассивному транспорту. Основным каналом активного транспорта ионов через мембрану является белок Na-KАТФаза, при гидролизе 1 молекулы АТФ переносящая 3Na из клетки и 2К в клетку. В целом на активный мембранный транспорт затрачивается 30% энергии АТФ от общего количества в клетке.

Цель ионного мембранного транспорта - поддержание разности концентраций ионов в цитоплазме и внешней среде. Действуя непрерывно и противоположно, компенсируя друг друга, пассивный и активный механизмы переноса ионов обеспечивают поддержание динамического концентрационного неравновесия, устойчивого во времени.

Мембранный потенциал покоя

Разность концентраций ионов - заряженных частиц - внутри клетки и снаружи обеспечивает разность зарядов цитоплазмы и внешней среды, а, следовательно, разность зарядов на внутренней и внешней поверхностях мембраны, что является условием возникновения мембранного потенциала. Потенциал покоя (ПП) - мембранный потенциал возбудимой клетки в невозбужденном состоянии. Он представляет собой разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны и составляет у теплокровных от -55 до -100 мВ. У нейронов и нервных волокон обычно составляет -70 мВ.

Так как заряд мембраны объясняется разностью концентраций ионов по обе стороны от неё, то и мембранный потенциал зависит от концентрации ионов в цитоплазме и межклеточной жидкости.

Для расчёта мембранного потенциала через концентрацию ионов используется уравнение Нернста.

Уравнение Нернста

Ф - мембранный потенциал покоя

R= 8,31 -универсальная газовая постоянная

Т - абсолютная температура

Z - заряд иона

F=96000 - постоянная Фарадея

Со - концентрация иона снаружи

Сi - концентрация ионов внутри

С помощью уравнения Нернста можно рассчитать равновесный трансмембранный потенциал для K + , который и определяет значение потенциала покоя. Но значение потенциала покоя полностью не совпадает с dф, так как в создании его участвуют также ионы натрия и хлора, вернее, их равновесные потенциалы.

Было доказано, что основной вклад в создание потенциала покоя вносит выходящий калиевый ток, который осуществляется через специфические белки-каналы - калиевые каналы постоянного тока. В покое калиевые каналы открыты, а натриевые каналы закрыты. Ионы калия выходят из клетки по градиенту концентрации, что создает на наружной стороне мембраны избыток положительных зарядов; при этом на внутренней стороне мембраны остаются отрицательные заряды. Некоторый (небольшой) вклад в создание потенциала покоя вносит также работа так называемого "натрий-калиевого насоса", который образован особым мембранным ферментом - натрий-калиевой АТФазой.

Потенциал покоя для большинства нейронов составляет величину порядка?60 мВ - ?70 мВ. У клеток невозбудимых тканей на мембране также имеется разность потенциалов, разная для клеток разных тканей и организмов.

Формирование потенциала покоя

Первый этап: создание незначительной (-10 мВ) отрицательности внутри клетки за счёт неравного асимметричного обмена Na + на K + в соотношении 3:2. В результате этого клетку покидает больше положительных зарядов с натрием, чем возвращается в неё с калием. Такая особенность работы натрий-калиевого насоса, осуществляющего взаимообмен этих ионов через мембрану с затратами энергии АТФ, обеспечивает его электрогенность.

Результаты деятельности мембранных ионных насосов-обменников на первом этапе формирования ПП таковы:

1. Дефицит ионов натрия (Na +) в клетке.

2. Избыток ионов калия (K +) в клетке.

3. Появление на мембране слабого электрического потенциала (-10 мВ).

Второй этап: создание значительной (-60 мВ) отрицательности внутри клетки за счёт утечки из неё через мембрану ионов K + . Ионы калия K + покидают клетку и уносят с собой из неё положительные заряды, доводя отрицательность до -70 мВ.

Итак, мембранный потенциал покоя - это дефицит положительных электрических зарядов внутри клетки, возникающий за счёт утечки из неё положительных ионов калия и электрогенного действия натрий-калиевого насоса.